Published online Oct 16, 2021. doi: 10.12998/wjcc.v9.i29.8740
Peer-review started: April 21, 2021
First decision: June 24, 2021
Revised: July 6, 2021
Accepted: August 23, 2021
Article in press: August 23, 2021
Published online: October 16, 2021
Processing time: 177 Days and 1.8 Hours
Insomnia is the most common sleep disorder. It disrupts the patient’s life and work, increases the risk of various health issues, and often requires long-term intervention. The financial burden and inconvenience of treatments discourage patients from complying with them, leading to chronic insomnia.
To investigate the long-term home-practice effects of mindful breathing combined with a sleep-inducing exercise as adjunctive insomnia therapy.
A quasi-experimental design was used in the present work, in which the patients with insomnia were included and grouped based on hospital admission: 40 patients admitted between January and April 2020 were assigned to the control group, and 40 patients admitted between May and August 2020 were assigned to the treatment group. The control group received routine pharmacological and physical therapies, while the treatment group received instruction in mindful breathing and a sleep-inducing exercise in addition to the routine therapies. The Pittsburgh Sleep Quality Index (PSQI), Generalized Anxiety Disorder 7-item (GAD-7) scale, and Insomnia Severity Index (ISI) were utilized to assess sleep-quality improvement in the patient groups before the intervention and at 1 wk, 1 mo, and 3 mo postintervention.
The PSQI, GAD-7, and ISI scores before the intervention and at 1 wk postintervention were not significantly different between the groups. However, compared with the control group, the treatment group exhibited significant improvements in sleep quality, daytime functioning, negative emotions, sleep latency, sleep duration, sleep efficiency, anxiety level, and insomnia severity at 1 and 3 mo postintervention (P < 0.05). The results showed that mindful breathing combined with the sleep-inducing exercise significantly improved the long-term effectiveness of insomnia treatment. At 3 mo, the PSQI scores for the treatment vs the control group were as follows: Sleep quality 0.98 ± 0.48 vs 1.60 ± 0.63, sleep latency 1.98 ± 0.53 vs 2.80 ± 0.41, sleep duration 1.53 ± 0.60 vs 2.70 ± 0.56, sleep efficiency 2.35 ± 0.58 vs 1.63 ± 0.49, sleep disturbance 1.68 ± 0.53 vs 2.35 ± 0.53, hypnotic medication 0.53 ± 0.64 vs 0.93 ± 0.80, and daytime dysfunction 1.43 ± 0.50 vs 2.48 ± 0.51 (all P < 0.05). The GAD-7 scores were 2.75 ± 1.50 vs 7.15 ± 2.28, and the ISI scores were 8.68 ± 2.26 vs 3.38 ± 1.76 for the treatment vs the control group, respectively (all P < 0.05).
These simple, cost-effective, and easy-to-implement practices used in clinical or home settings could have profound significance for long-term insomnia treatment and merit wide adoption in clinical practice.
Core Tip: The adjunctive therapies of mindful breathing and a sleep-inducing exercise could improve the outcome of patients with insomnia by providing a simple, cost-effective, and easy-to-implement method that can be used both clinically and long-term in a home setting. The findings indicated that compared with the control group, the group that performed mindful breathing and a sleep-inducing exercise in conjunction with routine pharmacological and physical therapies exhibited significant improvements in sleep quality, daytime functioning, negative emotions, sleep latency, sleep duration, sleep efficiency, anxiety level, and insomnia severity at 1 and 3 mo after the intervention (P < 0.05).