Published online Jun 26, 2021. doi: 10.12998/wjcc.v9.i18.4585
Peer-review started: November 16, 2020
First decision: January 17, 2021
Revised: January 26, 2021
Accepted: February 24, 2021
Article in press: February 24, 2021
Published online: June 26, 2021
Processing time: 207 Days and 1.9 Hours
Diffuse large B-cell lymphoma (DLBCL) is a common non-Hodgkin lymphoma. The development of immunotherapy greatly improves the patient prognosis but there are some exceptions. Thus, screening for better biomarkers for prognostic evaluation could contribute to the treatment of DLBCL patients.
To screen the novel mediators involved in the development of DLBCL.
The GSE60 dataset was applied to identify the differentially expressed genes (DEGs) in DLBCL, and the principal components analysis plot was used to determine the quality of the included samples. The protein-protein interactions were analyzed by the STRING tool. The key hub genes were entered into to the GEPIA database to determine their expressions in DLBCL. Furthermore, these hub gene alterations were analyzed in cBioportal. The UALCAN portal was employed to analyze the expression of the hub genes in different stages of DLBCL. The Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data Score was conducted to evaluate the correlation between the gene expression and tumor purity. The gene-gene correlation analysis was conducted in the GEPIA. The stromal score analysis was conducted in TIMER to confirm the correlation between the gene expression and infiltrated stromal cells. The correlation between the indicated genes and infiltration level of cancer-associated fibroblasts (CAFs) was also completed in TIMER with two methods, MCP-Counter and Tumor immune dysfunction and exclusion. The correlation between fibronectin (FN1) protein level and secreted protein acidic and cysteine-rich (SPARC) messenger ribonucleic acid expression was confirmed in the cBioportal.
The top 20 DEGs in DLBCL were identified, and the principal components analysis plot confirmed the quality of the significant DEGs. The pairwise correlation coefficient analysis among all samples showed that these DEGs have a certain co-expression pattern. The DEGs were subjected to STRING to identify the hub genes, alpha-2-macroglobulin (A2M), cathepsin B (CTSB), FN1, matrix metallopeptidase 9 (MMP9), and SPARC. The five hub genes were confirmed to be overexpressed in DLBCL. The cBioportal portal detected these five hub genes that had gene alteration, including messenger ribonucleic acid high amplification and missense mutation, and the gene alteration percentages of A2M, FN1, CTSB, MMP9, and SPARC were 5%, 8%, 5%, 2.7%, and 5%, respectively. Furthermore, the five hub genes had a potential positive correlation with tumor stage. The correlation analysis between the five genes and tumor purity confirmed that the five genes were overexpressed in DLBCL and had a positive correlation with the development of DLBCL. More interestingly, the five genes had a significant correlation with the stromal infiltration scores. The correlation analysis between the fives genes and CAFs also showed a significant value, among which the top two genes, FN1 and SPARC, had a remarkable co-expression pattern.
The top DEGs were identified, and the five hub genes were overexpressed in DLBCL. Furthermore, the gene alterations were confirmed and the positive correlation with tumor purity revealed the overexpression of the five genes and close association with the development of DLBCL. More interestingly, the five genes were positively correlated with stromal infiltration, especially in CAFs. The top two genes, FN1 and SPARC, showed a co-expression pattern, which indicates their potential as novel therapeutic targets for DLBCL.
Core Tip: In this project, we identified five genes that were overexpressed in diffuse large B-cell lymphoma (DLBCL), and the five gene signatures were closely associated with the development of DLBCL. More importantly, the five genes were positively correlated with stromal cell infiltration, especially in cancer-associated fibroblasts. Taken together, these genes might be novel therapeutic targets for DLBCL.