For: | Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7(2): 315-328 [PMID: 25815117 DOI: 10.4252/wjsc.v7.i2.315] |
---|---|
URL: | https://www.wjgnet.com/1948-0210/full/v7/i2/315.htm |
Number | Citing Articles |
1 |
Dean H. Betts, Ian C. Tobias. Canine Pluripotent Stem Cells: Are They Ready for Clinical Applications?. Frontiers in Veterinary Science 2015; 2 doi: 10.3389/fvets.2015.00041
|
2 |
B. Barboni, V. Russo, P. Berardinelli, A. Mauro, L. Valbonetti, H. Sanyal, A. Canciello, L. Greco, A. Muttini, V. Gatta, L. Stuppia, M. Mattioli. Placental Stem Cells from Domestic Animals. Cell Transplantation 2018; 27(1): 93 doi: 10.1177/0963689717724797
|
3 |
Ali Pooria, Afsoun Pourya, Alireza Gheini. Animal‐ and human‐based evidence for the protective effects of stem cell therapy against cardiovascular disorders. Journal of Cellular Physiology 2019; 234(9): 14927 doi: 10.1002/jcp.28330
|
4 |
Thirumala R. Talluri, Dharmendra Kumar, Wilfried A. Kues. Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology 2021; 2454: 791 doi: 10.1007/7651_2021_350
|
5 |
|
6 |
Matthew Trawczynski, Gele Liu, Brian T. David, Richard G. Fessler. Restoring Motor Neurons in Spinal Cord Injury With Induced Pluripotent Stem Cells. Frontiers in Cellular Neuroscience 2019; 13 doi: 10.3389/fncel.2019.00369
|
7 |
Tarun Kumar Upadhyay, Rashmi Trivedi, Fahad Khan, Pratibha Pandey, Amit Baran Sharangi, Harsh Goel, Mohd Saeed, Moon Nyeo Park, Bonglee Kim. Potential Therapeutic Role of Mesenchymal-Derived Stem Cells as an Alternative Therapy to Combat COVID-19 through Cytokines Storm. Cells 2022; 11(17): 2686 doi: 10.3390/cells11172686
|
8 |
Toshihiko Ezashi, Ye Yuan, R. Michael Roberts. Pluripotent Stem Cells from Domesticated Mammals. Annual Review of Animal Biosciences 2016; 4(1): 223 doi: 10.1146/annurev-animal-021815-111202
|
9 |
Fulvio Gandolfi, Tiziana A. L. Brevini. Animal Biotechnology 2. 2018; : 215 doi: 10.1007/978-3-319-92348-2_10
|
10 |
Narae Kim. pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reproductive Medicine and Biology 2021; 20(1): 20 doi: 10.1002/rmb2.12346
|
11 |
Melissa Medeiros Markoski. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica 2016; 2016: 1 doi: 10.1155/2016/4516920
|
12 |
R. Michael Roberts, Ye Yuan, Toshihiko Ezashi. Exploring early differentiation and pluripotency in domestic animals. Reproduction, Fertility and Development 2017; 29(1): 101 doi: 10.1071/RD16292
|
13 |
Dharmendra Kumar, Meeti Punetha, Pradeep Kumar, P. S. Yadav, Naresh L. Selokar. Biotechnological Applications in Buffalo Research. 2022; : 247 doi: 10.1007/978-981-16-7531-7_12
|
14 |
J. Ogorevc, S. Orehek, P. Dovč. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. Journal of Animal Science and Biotechnology 2016; 7(1) doi: 10.1186/s40104-016-0070-3
|
15 |
Deepak Kumar, Taruna Anand, Kennady Vijayalakshmy, Papori Sharma, Rasika Rajendran, Naresh L. Selokar, P.S. Yadav, Dharmendra Kumar. Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Research in Veterinary Science 2019; 123: 252 doi: 10.1016/j.rvsc.2019.01.015
|
16 |
Delia A. Soto, Pablo J. Ross. Pluripotent stem cells and livestock genetic engineering. Transgenic Research 2016; 25(3): 289 doi: 10.1007/s11248-016-9929-5
|
17 |
Dharmendra Kumar, Taruna Anand, Thirumala R Talluri, Wilfried A Kues. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World Journal of Stem Cells 2020; 12(7): 527-544 doi: 10.4252/wjsc.v12.i7.527
|
18 |
Shahram Rabbani, Mohammad Imani. Nanomedicine for Ischemic Cardiomyopathy. 2020; : 47 doi: 10.1016/B978-0-12-817434-0.00005-2
|
19 |
Christopher S. Rogers. Engineering Large Animal Species to Model Human Diseases. Current Protocols in Human Genetics 2016; 90(1) doi: 10.1002/cphg.18
|
20 |
James C. Ferguson, Stefan Tangl, Dirk Barnewitz, Antje Genzel, Patrick Heimel, Veronika Hruschka, Heinz Redl, Thomas Nau. A large animal model for standardized testing of bone regeneration strategies. BMC Veterinary Research 2018; 14(1) doi: 10.1186/s12917-018-1648-0
|
21 |
Bahareh Pourjabbar, Forough Shams, Maryam Moghadam, Milad Ahani-Nahayati, Arezo Azari, Farshid Sefat, Saeed Heidari Keshel. Recent Emerging Trend in Stem Cell Therapy Risk Factors. Current Stem Cell Research & Therapy 2023; 18(8): 1076 doi: 10.2174/1574888X18666221223104859
|
22 |
Wenting Xu, Huajin Li, Liangyue Peng, Liyu Pu, Sijia Xiang, Yue Li, Leiting Tao, Wenbin Liu, Jinhui Liu, Yamei Xiao, Shaojun Liu. Fish Pluripotent Stem-Like Cell Line Induced by Small-Molecule Compounds From Caudal Fin and its Developmental Potentiality. Frontiers in Cell and Developmental Biology 2022; 9 doi: 10.3389/fcell.2021.817779
|
23 |
Dharmendra Kumar, Taruna Anand, Wilfried A. Kues. Clinical potential of human-induced pluripotent stem cells. Cell Biology and Toxicology 2017; 33(2): 99 doi: 10.1007/s10565-016-9370-9
|
24 |
|
25 |
Thirumala R. Talluri, Dharmendra Kumar, Silke Glage, Wiebke Garrels, Zoltan Ivics, Katharina Debowski, Rüdiger Behr, Heiner Niemann, Wilfried A. Kues. Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cellular Reprogramming 2015; 17(2): 131 doi: 10.1089/cell.2014.0080
|
26 |
Dharmendra Kumar, Thirumala R Talluri, Naresh L Selokar, Iqbal Hyder, Wilfried A Kues. Perspectives of pluripotent stem cells in livestock. World Journal of Stem Cells 2021; 13(1): 1-29 doi: 10.4252/wjsc.v13.i1.1
|
27 |
|
28 |
Phuc Van Pham, Nhan Lu-Chinh Phan, Ngoc Bich Vu, Nhung Hai Truong, Ngoc Kim Phan. Stem Cell Processing. Stem Cells in Clinical Applications 2016; : 77 doi: 10.1007/978-3-319-40073-0_4
|
29 |
Fulvio Gandolfi, Tiziana A. L. Brevini. Biotechnologie bei Nutztieren 2. 2023; : 241 doi: 10.1007/978-3-031-26042-1_10
|
30 |
Jan O. Secher, Henrik Callesen, Kristine K. Freude, Poul Hyttel. Initial embryology and pluripotent stem cells in the pig—The quest for establishing the pig as a model for cell therapy. Theriogenology 2016; 85(1): 162 doi: 10.1016/j.theriogenology.2015.09.017
|
31 |
Xin-yu ZHOU, Liang-liang LIU, Wen-chao JIA, Chuan-ying PAN. Methylation profile of bovine Oct4 gene coding region in relation to three germ layers. Journal of Integrative Agriculture 2016; 15(3): 618 doi: 10.1016/S2095-3119(15)61100-5
|
32 |
Silvia Pellegrini, Valeria Sordi. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. 2020; : 381 doi: 10.1016/B978-0-12-814831-0.00028-2
|
33 |
Dharmendra Kumar, Pradeep Kumar, Naresh L. Selokar, P.S. Yadav. iPSCs from Diverse Species. 2021; : 149 doi: 10.1016/B978-0-12-822228-7.00007-2
|
34 |
T. R. Talluri, Bhanu P. Telugu. Frontier Technologies in Bovine Reproduction. 2022; : 255 doi: 10.1007/978-981-19-3072-0_13
|
35 |
Rajneesh Verma, Younghyun Lee, Daniel F. Salamone. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals 2022; 12(22): 3187 doi: 10.3390/ani12223187
|
36 |
Paria Bayati, Marjan Taherian, Nazanin Mojtabavi. Immunomodulatory effects of the induced pluripotent stem cells through expressing IGF-related factors and IL-10 in vitro. International Journal of Immunopathology and Pharmacology 2024; 38 doi: 10.1177/03946320241276899
|
37 |
Kyoko Miura, Yuki Oiwa, Yoshimi Kawamura. The Extraordinary Biology of the Naked Mole-Rat. Advances in Experimental Medicine and Biology 2021; 1319: 329 doi: 10.1007/978-3-030-65943-1_13
|