Copyright
©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Jul 26, 2020; 12(7): 527-544
Published online Jul 26, 2020. doi: 10.4252/wjsc.v12.i7.527
Published online Jul 26, 2020. doi: 10.4252/wjsc.v12.i7.527
Potential of transposon-mediated cellular reprogramming towards cell-based therapies
Dharmendra Kumar, Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
Taruna Anand, NCVTC, ICAR-National Research Centre on Equines, Hisar 125001, India
Thirumala R Talluri, Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
Wilfried A Kues, Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Department of Biotechnology, Mariensee 31535, Germany
Author contributions: Kumar D and Kues WA drafted and wrote the review; Anand T and Talluri TR designed the figures and contributed specific chapters; all authors read and approved the final version of the manuscript.
Conflict-of-interest statement: Authors declared there is no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Dharmendra Kumar, PhD, Senior Scientist, Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India. dharmendra.kumar@icar.gov.in
Received: February 26, 2020
Peer-review started: February 26, 2020
First decision: April 26, 2020
Revised: May 9, 2020
Accepted: May 28, 2020
Article in press: May 28, 2020
Published online: July 26, 2020
Processing time: 150 Days and 20.5 Hours
Peer-review started: February 26, 2020
First decision: April 26, 2020
Revised: May 9, 2020
Accepted: May 28, 2020
Article in press: May 28, 2020
Published online: July 26, 2020
Processing time: 150 Days and 20.5 Hours
Core Tip
Core tip: The seminal discovery of induced pluripotent stem (iPS) cells has opened up the possibility of converting most somatic cell types into a pluripotent state. The iPS cells possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. This procedure has had a large impact on the generation of custom-made pluripotent cells, ideal for cell-type specific differentiation and regenerative medicine with or without genetic correction. In this review, we focus on updated information of transposon system-mediated cellular reprogramming to iPS cells and their application in cellular therapy.