Published online May 26, 2019. doi: 10.12998/wjcc.v7.i10.1111
Peer-review started: February 12, 2019
First decision: April 18, 2019
Revised: April 24, 2019
Accepted: May 1, 2019
Article in press: May 1, 2019
Published online: May 26, 2019
Processing time: 108 Days and 18.7 Hours
Acinetobacter species are simultaneously resistant to many antimicrobial agents, and treatment options are extremely limited. Although colistin appears to be the only remaining therapeutic option for extensively-resistant Acinetobacter infections, colistin resistance in Acinetobacter strains has been reported worldwide. Knowledge of the risk factors is important for colistin resistance. This study highlights risk factors of colistin resistance and salvage therapies in Acinetobacter sp. Infections.
Infections with resistant Acinetobacter strains were found to be associated with high mortality rates. Combination therapies were commonly recommended since resistance could develop during therapies. The main goals for control of multidrug-resistant Acinetobacter should be early recognition, knowing risk factors, aggressive control of spread of the resistant strains. The problem for treatment of nosocomial infections with extensively- or pandrug-resistant Acinetobacter strains may be solved in future with development of new antimicrobial agents targeting these resistant strains.
In our study we evaluated the clinical responses and the outcomes of ventilator-associated pneumonia (VAP) patients with resistant Acinetobacter strains. The risk factors for colistin resistance were also investigated.
Between January 2015 and April 2018, 108 patients with VAP due to colistin-susceptible strains and 16 patients with colistin-resistant strains were included in this study retrospectively. These two groups were compared for the age, sex, comorbidities, prior receipt of antibiotics, mortality rates, APACHE II and SOFA scores, duration of microbiological cure and the clinical, laboratory, radiological, and microbiological responses. Mann-Whitney U test was used to compare continuous variables whereas Pearson’s χ2 test or Fisher’s Exact χ2 test was used to compare the categorical variables. The potential independent risk factors for infection with colistin resistant strains were identified by using a binary logistic regression model.
The median duration of microbiological cure (P < 0.001) was longer in colistin-resistant group. Clinical (P = 0.703), laboratory (P = 0.277), radiological (P = 0.551), microbiological response (P = 1.000) and infection related mortality rates (P = 0.603) did not differ between patients with pneumonia due to colistin-resistant and colistin-susceptible strains. Independent risk factors for pneumonia with colistin-resistant Acinetobacter strains were found to be high APACHE II scores (OR = 1.9, 95%CI: 1.4-2.7; P < 0.001) and prior receipt of teicoplanin (OR = 8.1, 95%CI: 1.0-63.3; P = 0.045). Different combination of antibiotic regimens included colistin, meropenem, ampicillin/sulbactam, amikacin and trimetoprim/sulfamethoxazole were given to patients with colistin-resistant strains. Among patients with infection due to colistin-resistant strains, seven of them were treated with antibiotic combinations included sulbactam. Clinical (6/7) and microbiological (5/7) response rates were quite high in these patients. Very limited data is available for the optimal therapy regimens of infections with pandrug-resistant Acinetobacter strains. Individual treatment combinations may be given to the patients with infection due to colistin-resistant Acinetobacter strains.
High APACHE II scores and prior teicoplanin usage were found to be the risk factors for pneumonia due to colistin resistant Acinetobacter strains. Statistically significant difference was not found between the mortality rates of the patients with colistin-susceptible and colistin-resistant strains. Combination antibiotic regimens including sulbactam seemed to be more useful. Further prospective studies are needed to evaluate the optimal therapy regimens. As prior usage of teicoplanin was found to be an independent factor for colistin resistance, patients should be carefully treated with teicoplanin empirically.
Prospective randomized-controlled studies investigating optimal therapy regimens or new antimicrobials targeting colistin resistant Acinetobacter strains are needed. Risk factors for colistin resistance should be well known and strict prevention and control methods should be used in intensive care units.