Published online Aug 26, 2022. doi: 10.12998/wjcc.v10.i24.8514
Peer-review started: February 22, 2022
First decision: March 23, 2022
Revised: March 28, 2022
Accepted: July 18, 2022
Article in press: July 18, 2022
Published online: August 26, 2022
Processing time: 174 Days and 17.3 Hours
Shoulder is the most injured part in table tennis players, and it takes multiple roles in transmitting power and striking the center of the ball during the stroke. Proprioception is strongly correlated with high level of athletic performance. It is customary to assume that there is a correlation between proprioception and muscle strength and therefore proprioceptive assessment and rehabilitation is often neglected.
To investigate the correlation between isokinetic muscle strength and proprioception in the internal and external rotation muscle groups of elite Chinese male table tennis players, to provide reference for physical training and rehabilitation of elite table tennis players.
A total of 19 national elite table tennis players from the Chinese National Table Tennis Team were recruited in this research. All of them had more than 10 years training experience and had participated major competitions such as the National Games and World Youth Championships. IsoMed 2000 was used to test the peak torque of internal and external rotation isokinetic concentric contraction of the athletes' bilateral shoulder joints at low speed (60°/s) and high speed (180°/s) respectively; IsoMed 2000 was used to conduct the Joint Position Reproduction test to evaluate the athletes' proprioceptive ability capacity at low speed (60°/s) and high speed (180°/s) respectively. If the data satisfied the normal distribution, the correlation between the differences in peak torque s and angles in different directions was analyzed using a Pearson simple linear model; otherwise, Spearman correlation analysis was used. The comparison of proprioceptive ability between the table tennis racket-holding hand and non-racket-holding hands was performed using independent samples t-test if the data satisfied a normal distribution; otherwise, the Mann-Whitney U test was used.
There was no direct linear correlation between the strength and proprioceptive correlation analysis at slow speed (60°/s) and fast speed (180°/s) in the racket-holding hand; At the slow speed (60°/s) and fast speed (180°/s), there was no correlation between muscle strength and proprioception in the non-racket-holding hand except for the internal rotation variable error (VE) and external rotation relative peak torque, which showed a moderate positive correlation (r = 0.477, P < 0.05), (r = 0.554, P < 0.05). The internal rotation’s constant error (CE) and VE were 1.06 ± 3.99 and 2.94 ± 2.16, respectively, for the racket-holding hand, and -3.36 ± 2.39 and 1.22 ± 0.93, respectively, for the non-racket-holding hand; the internal rotation’s CE, VE of the racket-holding hand was lower than that of the non-racket-holding hand, and there was a highly significant difference (P < 0.01).
There was no correlation between muscle strength and proprioceptive function in the internal and external rotation of the racket-holding hand’s shoulder in elite Chinese male table tennis players. These results may be useful for interventions for shoulder injuries and for the inclusion of proprioceptive training in rehabilitation programs.
Core Tip: Increased muscle strength does not necessarily improve spine and shoulder proprioception in table tennis players. Upper limb stabilization and plyometric training, which stimulates the body's proprioceptors and trains the body's muscles, may be recommended exercise therapy.