Review Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Nov 15, 2024; 16(11): 4354-4368
Published online Nov 15, 2024. doi: 10.4251/wjgo.v16.i11.4354
Effect of colorectal cancer stem cells on the development and metastasis of colorectal cancer
Run-Zhi Deng, Xin Zheng, Zhong-Lei Lu, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
Ming Yuan, Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
Qi-Chang Meng, Department of General Surgery, Peking University First Hospital, Beijing 100034, China
Tao Wu, Department of General Surgery, West China Hospital of Sichuan University, Chengdu 610044, Sichuan Province, China
Yu Tian, Department of Thoracic Surgery, Yancheng No. 1 People’s Hospital, Affiliated Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, Yancheng 224000, Jiangsu Province, China
ORCID number: Yu Tian (0009-0004-8690-5376).
Author contributions: Deng RZ wrote the manuscript; Zheng X, Lu ZL, Yuan M, Meng QC, and Wu T collected the data; Tian Y guided the study. All authors reviewed, edited, and approved the final manuscript and revised it critically for important intellectual content, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Yu Tian, Doctor, Department of Thoracic Surgery, Yancheng No. 1 People’s Hospital, Affiliated Hospital of Nanjing University Medical School, The First People’s Hospital of Yancheng, No. 166 Yulong Road, Yancheng 224000, Jiangsu Province, China. tianyujsyc@163.com
Received: July 23, 2024
Revised: August 24, 2024
Accepted: September 9, 2024
Published online: November 15, 2024
Processing time: 93 Days and 18.4 Hours

Abstract

The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role - immune checkpoints - and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.

Key Words: Colorectal cancer; Colorectal cancer stem cells; Tumor metastasis; Tumor immune microenvironment; Review

Core Tip: The role of colorectal cancer stem cells in the tumor immune microenvironment, the development and metastasis of colorectal cancer. This paper focuses on how colorectal cancer stem cells affect the tumor immune microenvironment through immune escape, immunosuppression and microenvironment remodeling, and analyzes their key functions in tumor progression and metastasis. In addition, this paper also summarizes potential therapeutic strategies for colorectal cancer stem cells, aiming to inhibit their cancer-promoting effects and provide new targets and ideas for the treatment of colorectal cancer.



INTRODUCTION

Colorectal cancer is one of the most common types of cancer worldwide, accounting for approximately 10% of all new cancers and 8.5% of all cancer deaths[1-5]. The incidence of colorectal cancer tends to increase with age, with patients under the age of 40 accounting for 2%-8% of all colorectal cancer patients[6-10]. At present, the treatment of colorectal cancer is mainly based on the combination of surgical treatment, radiotherapy and chemotherapy[11-14]. The vast majority of early-stage patients can be cured by surgery, but only a small proportion of patients with metastatic colorectal cancer can be cured by surgery, and the 5-year survival rate is very low[15-20]. The recurrence of colorectal cancer occurs mostly in the form of metastasis, which is mainly caused by residual tumor cells that spread to distant organs before surgery[21-26]. However, current systemic therapy (systemic chemotherapy) does not eliminate latent residual tumor cells and has no therapeutic effect on the growth of metastases, providing patients with a survival advantage of only a few months[27-30]. Metastasis occurs when cancer spreads to distant organs and forms metastases, mainly involving the liver and lungs, in patients with colorectal cancer. To metastasize, cancer cells need to invade surrounding tissue, survive in circulation, colonize distant organs, and eventually regain their ability to grow, but metastasis is an inefficient process, and most cancer cells lose their ability to grow during metastasis[31-35]. Since 2016, scholars have gradually discovered related factors affecting colorectal cancer metastasis: Tumor regeneration in distant organs is closely related to the acquisition of stem cell-like phenotypes by cancer cells. Metastatic tumor stem cells have a variety of phenotypes and biological behaviors, and tumors mainly rely on interactions with the microenvironment to migrate, survive in circulation, and regenerate in distant organs[36-38]. This article reviews the effects of colorectal cancer stem cells and the microenvironment on colorectal cancer metastasis.

OVERVIEW OF COLORECTAL CANCER

Normal colon epithelial cells are constantly renewed, and the crypt cells at the base of the colon mucosal glands are rapidly proliferating and differentiating intestinal stem cells, which can maintain the steady regeneration of epithelial cells[39-44]. Signaling pathways regulating intestinal stem cell renewal and proliferation, including the Wnt, epidermal growth factor receptor/mitogen-activated protein kinase and Notch signaling pathways, have been continuously identified, and the transforming growth factor (TGF)-β signaling pathway induces cell cycle arrest[45-48]. The high proliferation state of intestinal stem cells increases the possibility of mutation in the DNA replication stage, and environmental factors such as lifestyle, diet and microorganisms also have a great influence on the transformation of epithelial cells. In patients with colorectal cancer, the most common genetic change is inactivation of the tumor suppressor gene APC, which activates the Wnt signaling pathway to maintain a continuous stem cell proliferation state in the initial stage of tumor development, resulting in benign epithelial cell proliferation, namely, adenoma[49-52]. Genetic experiments conducted in mouse models confirmed the hypothesis that mutations in the APC gene in intestinal stem cells are the origin of intestinal polyps[53-55]. However, a small percentage of primitive accumulations become aggressive through other mutations, which are mainly mediated by three signaling pathways: (1) The mitogen-activated protein kinase pathway. By activating mutations in the KRAS, BRAF, or PIK3CA genes, cancer cells acquire the ability to undergo autonomous mitosis and proliferate; (2) The p53 pathway is activated and inactivated by mutated p53 proteins, resulting in genomic instability; and (3) TGF-β pathway. Commonly, TGFBR2, SMAD4, SMAD2, or SMAD3 are functionally deficient and inactivated, thus preventing the inhibitory effect of high TGF-β levels in the tumor microenvironment[56-60]. The acquisition of these mutations is a slow process. Due to chromosome instability and defects in the DNA mismatch repair system, tumors often accumulate hundreds or even thousands of genetic variants, some of which cause new biological behaviors in cancer cells and increase their aggressiveness; moreover, some of the effects of these mutations are still unknown, and these factors work together to make the treatment of colorectal cancer difficult[61-66].

As noted above, mutations that promote the development of colorectal cancer affect signaling pathways that regulate the behavior of intestinal stem cells, allowing cancer cells to divide and grow autonomously, which is unregulated by intestinal stem cell signaling[67-70]. It has been hypothesized that mutations acquired in the mitogen-activated protein kinase pathway, p53 pathway, and TGF-β pathway promote the growth of tumor cells in unfavorable environments[71-74]. Although these mutations promote tumor development, metastasis is still uncommon, suggesting that other factors are involved in limiting tumor spread[75-77]. Most colorectal cancers are aggressive at diagnosis, which gives shed cancer cells a chance to enter the circulatory system for months or longer, and when disseminated colorectal cancer cells enter the portal circulation, they are transported to the hepatic sinuses within minutes and into the liver parenchyma when the blood vessels open[78-80]. In the case of lung metastasis, colorectal cancer cells first enter the systemic circulation and then infiltrate the lung parenchyma, while the ability of colorectal cancer cells to infiltrate other organs (the brain) is unknown[81-84]. Studies have shown that the limiting factor in tumor metastasis is the ability of circulating tumor cells to colonize distant organs[85-89]. Most tumor cells that survive in the circulatory system and infiltrate distant organs die for reasons that are unclear and may be related to the recognition and killing of tumor cells by the innate and adaptive immune systems, while tumor cells that survive and adapt to the new environment can metastasize[90-94]. However, not all cancer cells that successfully spread to distant locations can proliferate in a new environment, and they often remain dormant in distant organs for months to years before regaining their ability to proliferate.

EFFECT OF COLORECTAL CANCER STEM CELLS ON COLORECTAL CANCER METASTASIS
Hierarchical structure of tumor cells: The concept of tumor stem cells

Tumors that first appear in the blood are a class of cells with self-renewal ability and unlimited differentiation potential[95-100]. Tumor stem cells differentiate into tumor cells with phenotypes different from those of the original cells in a suitable environment, thus leading to the formation of tumor metastases[101-106]. Some scholars have proposed that colorectal cancer is caused by groups of cells with different tumorigenic potentials, called tumor-initiating cells[107-109]. Studies have shown that tumor-initiating cells (also known as colorectal cancer stem cells), located at the top of the tumor cell hierarchy, can self-renew and have the potential to proliferate and differentiate over a long period of time, causing tumors when injected into mice[110-115]. The balance between stem cell pluripotency and cell differentiation in colorectal cancer relies on signaling pathways that regulate normal intestinal stem cells, many of which are supplied by tumor stromal cells, and the presence of other stroma-derived cytokines and growth factors at invasion sites further promotes the self-renewal of colorectal cancer stem cells[116-118]. Because colorectal cancer stem cells have the ability to self-renew and initiate tumors, they may represent (or give rise to) so-called metastatic stem cells, the cells of origin of metastasis. Studies have shown that only cells with long-term self-renewal capabilities are likely to metastasize[119-121].

Most colorectal cancers are a relatively disordered mix of stem cells and differentiated cells, and distant metastases form metastases with the same properties[122-128]. Although colorectal cancer stem cells present in tumor glands are tumorigenic when isolated and xenografted in mice, under natural conditions, they are only capable of metastasizing when they first undergo phenotypic changes that enable them to migrate and excrete, a process that occurs when cancer cells exchange substances with neighboring tissues and tumor stroma.

The metastasis of dormant and slowly proliferating tumor cells usually occurs

The incubation period of colorectal cancer cells is up to five years after the incubation period, which is the result of disseminated tumor cells remaining dormant[129-131]. Currently, the standard chemotherapy for removing these surviving tumor cells is standard chemotherapy, but chemotherapy causes limited damage to these surviving tumor cells because chemotherapy usually targets rapidly proliferating tumor cells, while dormant and slowly proliferating tumor cells are largely resistant to chemotherapy. Dormant tumor cells develop a special state of response to signals that induce cell death, thus protecting them from the immune system[132-136]. The latency of metastasis may be caused by two mechanisms: Population dormancy, that is, the equilibrium state of tumor cell proliferation and death, resulting in the non-expansion of micrometastases; this is a state in which cells are stationary or temporarily mitotic[137-140]. Understanding these mechanisms gives physicians the opportunity to cure patients by eliminating remaining lesions (or inhibiting their growth) before significant metastases occur. Although the origin, characterization, and regulation of the dormant cell population in colorectal cancer are unknown, these findings may provide directions for the study of the diversity of normal intestinal epithelial cells.

Genetic changes in tumor cells

Due to genomic instability, tumors acquire hundreds of genetic and epigenetic changes that give tumor cells a different phenotype, which can lead to clonal expansion, an evolutionary phenomenon that is the basis for tumors to adapt to different environments, colonize distant areas, and resist treatment[141-145]. Conceptually, phenotypic heterogeneity due to tumor cell grade and clonal diversity may have some correlation, with colorectal cancer stem cells representing clonally selected units that mutate in cells that are more differentiated but have a lower chance of being selected due to the population’s shorter lifespan[146-148]. Although clonal diversity has been associated with treatment resistance and an enhanced ability to metastasize, genetic sequencing of primary colorectal cancer and metastases did not reveal specific genetic mutations associated with tumor spread, and similarities between primary tumors and metastases suggest that nongenetic factors may play a special role in this process (Figure 1).

Figure 1
Figure 1 Immunogenic chemotherapy and radiotherapy to restore the tumor microenvironment. ICD: International Classification of Diseases; IL: Interleukin; TFN: Tumor necrosis factor; CXCL: Chemokine (C-X-C motif) ligand; TLR3: Toll-like receptor 3; MHC1: Major histocompatibility complex class I; ER: Endoplasmic reticulum; CRT: Calreticulin; CCL: Chemokine (C-C motif) ligand; HMGB: High mobility group box; DC: Dendritic cell; DAMP: Damage-associated molecular pattern; TNF: Tumor necrosis factor.
EFFECT OF THE MICROENVIRONMENT ON COLORECTAL CANCER METASTASIS

Colorectal cancer epithelial mesenchymal heterogeneity brings new ideas to the diagnosis and treatment of colorectal cancer patients, and intratumoral heterogeneity also includes many other cell types that penetrate the tumor, collectively known as the stroma or tumor microenvironment[149-151]. The function of the stroma is related to all steps of cancer progression and metastasis. During the process of cancer progression, cancer cells exchange substances with the stroma and develop together[152-154]. Conceptually, transformed cancer cells strongly change the properties and composition of the matrix, and these changes form a suitable microenvironment for cancer cell growth, providing protection for cancer cells[155]. Therefore, an increasing number of studies have focused on the characteristics of specific stromal cell populations related to tumor malignancy and metastatic colonization (Figure 2).

Figure 2
Figure 2 The microbiota can augment dendritic cell function and thus contribute to anticancer immunity. ICB: Immune checkpoint blockade; CTX: Cyclophosphamide; LN: Lymph node; IL: Interleukin; Th: T helper cell; CTL: Cytotoxic T lymphocyte; DC: Dendritic cell.
Cancer-associated fibroblasts in the microenvironment

Cancer-associated fibroblasts are a group of highly homologous activated fibroblasts with special phenotypes in the tumor stroma that can be isolated from different parts of the tumor. Cancer-associated fibroblasts differ from normal fibroblasts in that they activate the myofibroblast phenotype and promote the expression of alpha smooth muscle actin, fibroblast-specific protein-4, and fibroblast-activating protein, which are specific markers for the recognition of cancer-associated fibroblasts[156-158]. Cancer-associated fibroblasts provide a range of cytokines to colorectal cancer cells that promote cancer cell survival and tumor development[159-162]. In addition, gene expression signatures obtained from cancer-associated fibroblasts may be associated with poor prognosis in patients with colorectal cancer[163-165]. Therefore, cancer-associated fibroblasts are an important cell population in the tumor microenvironment that provides a suitable environment for cancer progression (Figure 3).

Figure 3
Figure 3 Lipid metabolism in the antitumor immune response. FATPs: Fatty acid transport proteins; TCR: T cell receptor; FAO: Fatty acid oxidation; IFN: Interferon; TNF: Tumor necrosis factor; IL: Interleukin; E-FABP: Epidermal fatty acid binding protein; NK: Natural killer; ROS: Reactive oxygen species; LDLR: Low-density lipoprotein receptor; PPAR: Peroxisome proliferator-activated receptor; PUSFA: Polyunsaturated fatty acids; FA: Fatty acid.
Stromal environment

The stromal environment surrounding tumor cells has a growing network of blood vessels that provide nutrients and oxygen for tumor cell growth[166-168]. Growth factors secreted by tumor cells stimulate the proliferation and differentiation of endothelial cells, thus promoting the formation of blood vessels, while tumor-related angiogenesis leads to vascular abnormalities, which often manifest as network disorders, excessive branching, reduced coverage and leakage of surrounding cells[169-171]. Vascular abnormalities are associated with metastasis and poor prognosis in patients with colorectal cancer. Vascular endothelial growth factor (VEGF) is a key regulator of the proliferation of most human tumor endothelial cells and can induce the activation of mitogen-activated protein kinase/extracellular signal-regulating kinase signaling pathways[172]. VEGF expression in tumors is associated with the invasion of cancer cells, increased vascular density and metastasis[173-176]. The combination of bevacizumab, monoclonal antibodies against VEGF, and angiogenesis inhibitors with chemotherapy has been shown to improve survival in patients with stage IV colorectal cancer (Figure 4).

Figure 4
Figure 4 Lipid metabolism in protumor immune responses. STAT3: Signal transducer and activator of transcription 3; CPT1B: Carnitine palmitoyltransferase 1B; FAO: Fatty acid oxidation; PD-1: Programmed cell death protein 1; PPAR: Peroxisome proliferator-activated receptor; MSR1: Macrophage scavenger receptor 1; TGFBR1: Transforming growth factor beta receptor 1; TLR: Toll-like receptor; mTOR: Mechanistic target of rapamycin; DC: Dendritic cell; MDSC: Myeloid-derived suppressor cell; NK: Natural killer; FATP: Fatty acid transport protein; Arg: Arginine; IL: Interleukin; TNF: Tumor necrosis factor; ABCG1: ATP-binding cassette sub-family G member 1; ROS: Reactive oxygen species; iNOS: Inducible nitric oxide synthase; CXCR: C-X-C chemokine receptor; ATGL: Adipose triglyceride lipase; PGE2: Prostaglandin E2; PUSFA: Polyunsaturated fatty acids; M-CSF: Macrophage colony-stimulating factor; TGF: Transforming growth factor; Treg: Regulatory T cell.
SA100A6 protein

SA100A6 is a calcium-ion binding protein and a member of the SA100 protein family[177-183]. At present, the SA100A4 protein family is known to indirectly promote tumor cell metastasis through the tumor microenvironment, and SA100A4 can promote monocyte polarization to the M2 type, thus promoting tumor metastasis. Studies have shown that SA100A6 can promote the progression and metastasis of colorectal cancer, but the underlying mechanism is not yet clear[184-190].

Interleukin-33

Interleukins are cytokines whose molecular structure and biological function are largely clear, and they play important regulatory roles[191-195]. It plays multiple roles in the activation and proliferation of immune cells and the regulation of the immune response[196-200]. Interleukin-33 is a cytokine secreted by endothelial and epithelial cells that can activate the mitogen-activated protein kinase signaling pathway and plays an important role in tumor angiogenesis in colorectal cancer[200-204]. Recent studies have shown that interleukin-33 plays a regulatory role in the occurrence, development and metastasis of tumors, and its abnormal expression may be related to the clinical characteristics of patients with tumors[205-209]. Interleukin-33 secreted by tumor cells significantly increases the generation of new blood vessels by increasing the proliferation, migration and differentiation of endothelial cells into blood vessels, thus increasing the metastasis and spread of colorectal cancer cells to the liver[210-212]. Blocking the signaling pathway mediated by interleukin-33 can inhibit angiogenesis and reduce the occurrence of tumors[213-215].

CONCLUSION

The effects of colorectal cancer stem cells and tumor microenvironment regulation on the progression and metastasis of colorectal cancer, as well as the formulation, optimization and application of treatments, are highly important. The theory of colorectal cancer stem cells explains why colorectal cancer is difficult to cure. Although the ability of colorectal cancer stem cells to cure colorectal cancer can be eradicated from the root, research on the use of these cells is still in its infancy, and further research is needed to determine the optimal treatment for colorectal cancer. The tumor microenvironment is closely related to the aggressiveness of the tumor, so the study of the tumor microenvironment is highly important for the prevention and treatment of tumor metastasis. Tumor heterogeneity plays a role in the generation and maintenance of drug resistance and metastasis ability of colorectal cancer stem cells, especially colonized metastasis supported by the tumor microenvironment. Treatments that target colorectal cancer stem cells and the microenvironment can prevent distant metastases in early-stage colorectal cancer patients who are at risk for distant metastases. In the future, targeted therapy targeting colorectal cancer stem cells and the microenvironment of cancer cells combined with radical surgery and systemic chemotherapy may provide a new direction for the treatment of colorectal cancer patients.

Footnotes

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Oncology

Country of origin: China

Peer-review report’s classification

Scientific Quality: Grade C, Grade C

Novelty: Grade C, Grade C

Creativity or Innovation: Grade C, Grade C

Scientific Significance: Grade B, Grade C

P-Reviewer: Jiang F; Kong MW S-Editor: Wang JJ L-Editor: A P-Editor: Zhang XD

References
1.  Li J, Wu C, Hu H, Qin G, Wu X, Bai F, Zhang J, Cai Y, Huang Y, Wang C, Yang J, Luan Y, Jiang Z, Ling J, Wu Z, Chen Y, Xie Z, Deng Y. Remodeling of the immune and stromal cell compartment by PD-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell. 2023;41:1152-1169.e7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 54]  [Reference Citation Analysis (0)]
2.  Lin JR, Wang S, Coy S, Chen YA, Yapp C, Tyler M, Nariya MK, Heiser CN, Lau KS, Santagata S, Sorger PK. Multiplexed 3D atlas of state transitions and immune interaction in colorectal cancer. Cell. 2023;186:363-381.e19.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 91]  [Article Influence: 91.0]  [Reference Citation Analysis (0)]
3.  Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F, De la Fuente M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front Immunol. 2021;12:612826.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 81]  [Article Influence: 27.0]  [Reference Citation Analysis (0)]
4.  Bao Y, Zhai J, Chen H, Wong CC, Liang C, Ding Y, Huang D, Gou H, Chen D, Pan Y, Kang W, To KF, Yu J. Targeting m(6)A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 2023;72:1497-1509.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 62]  [Cited by in F6Publishing: 36]  [Article Influence: 36.0]  [Reference Citation Analysis (0)]
5.  Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. Nanomedicine. 2019;21:102034.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 42]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
6.  Nenkov M, Ma Y, Gaßler N, Chen Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int J Mol Sci. 2021;22.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 72]  [Cited by in F6Publishing: 61]  [Article Influence: 20.3]  [Reference Citation Analysis (0)]
7.  AlMusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med. 2021;11:e308.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 34]  [Cited by in F6Publishing: 58]  [Article Influence: 19.3]  [Reference Citation Analysis (0)]
8.  Lin A, Zhang J, Luo P. Crosstalk Between the MSI Status and Tumor Microenvironment in Colorectal Cancer. Front Immunol. 2020;11:2039.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 83]  [Cited by in F6Publishing: 195]  [Article Influence: 48.8]  [Reference Citation Analysis (0)]
9.  Wang Y, Zhong X, He X, Hu Z, Huang H, Chen J, Chen K, Zhao S, Wei P, Li D. Liver metastasis from colorectal cancer: pathogenetic development, immune landscape of the tumour microenvironment and therapeutic approaches. J Exp Clin Cancer Res. 2023;42:177.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
10.  Koi M, Carethers JM. The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol. 2017;13:1633-1647.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 46]  [Cited by in F6Publishing: 63]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
11.  Mei Y, Xiao W, Hu H, Lu G, Chen L, Sun Z, Lü M, Ma W, Jiang T, Gao Y, Li L, Chen G, Wang Z, Li H, Wu D, Zhou P, Leng Q, Jia G. Single-cell analyses reveal suppressive tumor microenvironment of human colorectal cancer. Clin Transl Med. 2021;11:e422.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 42]  [Cited by in F6Publishing: 37]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
12.  Lu Y, Li Y, Liu Q, Tian N, Du P, Zhu F, Han Y, Liu X, Liu X, Peng X, Wang X, Wu Y, Tong L, Li Y, Zhu Y, Wu L, Zhang P, Xu Y, Chen H, Li B, Tong X. MondoA-Thioredoxin-Interacting Protein Axis Maintains Regulatory T-Cell Identity and Function in Colorectal Cancer Microenvironment. Gastroenterology. 2021;161:575-591.e16.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 52]  [Article Influence: 17.3]  [Reference Citation Analysis (0)]
13.  Liu ZY, Zheng M, Li YM, Fan XY, Wang JC, Li ZC, Yang HJ, Yu JM, Cui J, Jiang JL, Tang J, Chen ZN. RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics. 2019;9:3659-3673.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 50]  [Article Influence: 10.0]  [Reference Citation Analysis (0)]
14.  Ma B, Wang K, Liang Y, Meng Q, Li Y. Molecular Characteristics, Oncogenic Roles, and Relevant Immune and Pharmacogenomic Features of EVA1B in Colorectal Cancer. Front Immunol. 2022;13:809837.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 10]  [Reference Citation Analysis (0)]
15.  Du W, Frankel TL, Green M, Zou W. IFNγ signaling integrity in colorectal cancer immunity and immunotherapy. Cell Mol Immunol. 2022;19:23-32.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 66]  [Article Influence: 33.0]  [Reference Citation Analysis (0)]
16.  Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater. 2024;15:229.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
17.  Zheng X, Ma Y, Bai Y, Huang T, Lv X, Deng J, Wang Z, Lian W, Tong Y, Zhang X, Yue M, Zhang Y, Li L, Peng M. Identification and validation of immunotherapy for four novel clusters of colorectal cancer based on the tumor microenvironment. Front Immunol. 2022;13:984480.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Reference Citation Analysis (0)]
18.  Greco L, Rubbino F, Dal Buono A, Laghi L. Microsatellite Instability and Immune Response: From Microenvironment Features to Therapeutic Actionability-Lessons from Colorectal Cancer. Genes (Basel). 2023;14.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
19.  Lee SH, Pankaj A, Neyaz A, Ono Y, Rickelt S, Ferrone C, Ting D, Patil DT, Yilmaz O, Berger D, Deshpande V, Yılmaz O. Immune microenvironment and lymph node yield in colorectal cancer. Br J Cancer. 2023;129:917-924.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 2]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
20.  Wozniakova M, Skarda J, Raska M. The Role of Tumor Microenvironment and Immune Response in Colorectal Cancer Development and Prognosis. Pathol Oncol Res. 2022;28:1610502.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 13]  [Reference Citation Analysis (0)]
21.  Kasprzak A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int J Mol Sci. 2021;22.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 69]  [Article Influence: 23.0]  [Reference Citation Analysis (0)]
22.  Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer. 2019;120:871-882.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 51]  [Article Influence: 10.2]  [Reference Citation Analysis (0)]
23.  Fan A, Wang B, Wang X, Nie Y, Fan D, Zhao X, Lu Y. Immunotherapy in colorectal cancer: current achievements and future perspective. Int J Biol Sci. 2021;17:3837-3849.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 158]  [Cited by in F6Publishing: 152]  [Article Influence: 50.7]  [Reference Citation Analysis (0)]
24.  Alzamami A. Implications of single-cell immune landscape of tumor microenvironment for the colorectal cancer diagnostics and therapy. Med Oncol. 2023;40:352.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
25.  Bai J, Chen H, Bai X. Relationship between microsatellite status and immune microenvironment of colorectal cancer and its application to diagnosis and treatment. J Clin Lab Anal. 2021;35:e23810.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 25]  [Article Influence: 8.3]  [Reference Citation Analysis (0)]
26.  Zhang Q, Liu Y, Wang X, Zhang C, Hou M, Liu Y. Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis. Front Immunol. 2023;14:1184167.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
27.  Long L, Xiong W, Lin F, Hou J, Chen G, Peng T, He Y, Wang R, Xu Q, Huang Y. Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery. J Exp Clin Cancer Res. 2023;42:117.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 5]  [Reference Citation Analysis (0)]
28.  Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne). 2022;13:1089918.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
29.  Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev. 2023;42:575-587.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 6]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
30.  Li R, Liu X, Huang X, Zhang D, Chen Z, Zhang J, Bai R, Zhang S, Zhao H, Xu Z, Zeng L, Zhuang L, Wen S, Wu S, Li M, Zuo Z, Lin J, Lin D, Zheng J. Single-cell transcriptomic analysis deciphers heterogenous cancer stem-like cells in colorectal cancer and their organ-specific metastasis. Gut. 2024;73:470-484.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
31.  Jin K, Ren C, Liu Y, Lan H, Wang Z. An update on colorectal cancer microenvironment, epigenetic and immunotherapy. Int Immunopharmacol. 2020;89:107041.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 42]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
32.  He Y, Han Y, Fan AH, Li D, Wang B, Ji K, Wang X, Zhao X, Lu Y. Multi-perspective comparison of the immune microenvironment of primary colorectal cancer and liver metastases. J Transl Med. 2022;20:454.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 7]  [Reference Citation Analysis (0)]
33.  Hirano H, Takashima A, Hamaguchi T, Shida D, Kanemitsu Y; Colorectal Cancer Study Group (CCSG) of the Japan Clinical Oncology Group (JCOG). Current status and perspectives of immune checkpoint inhibitors for colorectal cancer. Jpn J Clin Oncol. 2021;51:10-19.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 32]  [Article Influence: 10.7]  [Reference Citation Analysis (0)]
34.  Guo XW, Lei RE, Zhou QN, Zhang G, Hu BL, Liang YX. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature. BMC Cancer. 2023;23:773.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
35.  Wilkinson K, Ng W, Roberts TL, Becker TM, Lim SH, Chua W, Lee CS. Tumour immune microenvironment biomarkers predicting cytotoxic chemotherapy efficacy in colorectal cancer. J Clin Pathol. 2021;74:625-634.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 10]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
36.  Van den Eynde M, Mlecnik B, Bindea G, Galon J. Multiverse of immune microenvironment in metastatic colorectal cancer. Oncoimmunology. 2020;9:1824316.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
37.  Meršaková S, Lasabová Z, Strnádel J, Kalman M, Gabonova E, Sabaka P, Ciccocioppo R, Rodrigo L, Kruzliak P, Mikolajčík P. Genomic profile and immune contexture in colorectal cancer-relevance for prognosis and immunotherapy. Clin Exp Med. 2021;21:195-204.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 4]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
38.  Wen H, Li F, Bukhari I, Mi Y, Guo C, Liu B, Zheng P, Liu S. Comprehensive Analysis of Colorectal Cancer Immunity and Identification of Immune-Related Prognostic Targets. Dis Markers. 2022;2022:7932655.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 4]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
39.  Pancione M, Giordano G, Remo A, Febbraro A, Sabatino L, Manfrin E, Ceccarelli M, Colantuoni V. Immune escape mechanisms in colorectal cancer pathogenesis and liver metastasis. J Immunol Res. 2014;2014:686879.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 69]  [Cited by in F6Publishing: 84]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
40.  Neupane P, Mimura K, Nakajima S, Okayama H, Ito M, Thar Min AK, Saito K, Onozawa H, Fujita S, Sakamoto W, Saito M, Saze Z, Momma T, Kono K. The Expression of Immune Checkpoint Receptors and Ligands in the Colorectal Cancer Tumor Microenvironment. Anticancer Res. 2021;41:4895-4905.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
41.  Chen Y, Zheng X, Wu C. The Role of the Tumor Microenvironment and Treatment Strategies in Colorectal Cancer. Front Immunol. 2021;12:792691.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 42]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
42.  Yin Y, Yao S, Hu Y, Feng Y, Li M, Bian Z, Zhang J, Qin Y, Qi X, Zhou L, Fei B, Zou J, Hua D, Huang Z. The Immune-microenvironment Confers Chemoresistance of Colorectal Cancer through Macrophage-Derived IL6. Clin Cancer Res. 2017;23:7375-7387.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 124]  [Cited by in F6Publishing: 170]  [Article Influence: 24.3]  [Reference Citation Analysis (0)]
43.  Pan B, Yue Y, Ding W, Sun L, Xu M, Wang S. A novel prognostic signatures based on metastasis- and immune-related gene pairs for colorectal cancer. Front Immunol. 2023;14:1161382.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
44.  Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol. 2022;13:1027124.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 4]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
45.  Gang W, Wang JJ, Guan R, Yan S, Shi F, Zhang JY, Li ZM, Gao J, Fu XL. Strategy to targeting the immune resistance and novel therapy in colorectal cancer. Cancer Med. 2018;7:1578-1603.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 22]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
46.  Yao J, Song Y, Yu X, Lin Z. Interaction between N(6)-methyladenosine modification and the tumor microenvironment in colorectal cancer. Mol Med. 2023;29:129.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
47.  Grizzi F, Basso G, Borroni EM, Cavalleri T, Bianchi P, Stifter S, Chiriva-Internati M, Malesci A, Laghi L. Evolving notions on immune response in colorectal cancer and their implications for biomarker development. Inflamm Res. 2018;67:375-389.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 29]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
48.  Gu B, Wang B, Li X, Feng Z, Ma C, Gao L, Yu Y, Zhang J, Zheng P, Wang Y, Li H, Zhang T, Chen H. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front Immunol. 2022;13:1050421.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 9]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
49.  Wang C, Yuan M, Gao Y, Hou R, Song D, Feng Y. Changes in Tumor Immune Microenvironment after Radiotherapy Resistance in Colorectal Cancer: A Narrative Review. Oncol Res Treat. 2023;46:177-191.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
50.  Wang L, Chen X, Zhang H, Hong L, Wang J, Shao L, Chen G, Wu J. Comprehensive analysis of transient receptor potential channels-related signature for prognosis, tumor immune microenvironment, and treatment response of colorectal cancer. Front Immunol. 2022;13:1014834.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 4]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
51.  Ciner AT, Jones K, Muschel RJ, Brodt P. The unique immune microenvironment of liver metastases: Challenges and opportunities. Semin Cancer Biol. 2021;71:143-156.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 29]  [Article Influence: 7.3]  [Reference Citation Analysis (0)]
52.  Li X, Tang J, Du H, Wang X, Wu L, Hu P, Zhang H, Zhang R, Yang Y. Immune Characters and Plasticity of the Sentinel Lymph Node in Colorectal Cancer Patients. J Immunol Res. 2021;2021:5516399.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
53.  Hurtado CG, Wan F, Housseau F, Sears CL. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology. 2018;155:1706-1715.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 89]  [Cited by in F6Publishing: 81]  [Article Influence: 13.5]  [Reference Citation Analysis (0)]
54.  Sulit AK, Daigneault M, Allen-Vercoe E, Silander OK, Hock B, McKenzie J, Pearson J, Frizelle FA, Schmeier S, Purcell R. Bacterial lipopolysaccharide modulates immune response in the colorectal tumor microenvironment. NPJ Biofilms Microbiomes. 2023;9:59.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 3]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
55.  Ge P, Wang W, Li L, Zhang G, Gao Z, Tang Z, Dang X, Wu Y. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of colorectal cancer. Biomed Pharmacother. 2019;118:109228.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 103]  [Cited by in F6Publishing: 153]  [Article Influence: 30.6]  [Reference Citation Analysis (0)]
56.  Sendi H, Yazdimamaghani M, Hu M, Sultanpuram N, Wang J, Moody AS, McCabe E, Zhang J, Graboski A, Li L, Rojas JD, Dayton PA, Huang L, Wang AZ. Nanoparticle Delivery of miR-122 Inhibits Colorectal Cancer Liver Metastasis. Cancer Res. 2022;82:105-113.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 27]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
57.  Jary M, Liu WW, Yan D, Bai I, Muranyi A, Colle E, Brocheriou I, Turpin A, Radosevic-Robin N, Bourgoin P, Penault-Llorca F, Cohen R, Vernerey D, André T, Borg C, Shanmugam K, Svrcek M. Immune microenvironment in patients with mismatch-repair-proficient oligometastatic colorectal cancer exposed to chemotherapy: the randomized MIROX GERCOR cohort study. Mol Oncol. 2022;16:2260-2273.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
58.  Zhang W, Zeng B, Hu X, Zou L, Liang J, Song Y, Liu B, Liu S. Oncolytic Herpes Simplex Virus Type 2 Can Effectively Inhibit Colorectal Cancer Liver Metastasis by Modulating the Immune Status in the Tumor Microenvironment and Inducing Specific Antitumor Immunity. Hum Gene Ther. 2021;32:203-215.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 7]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
59.  Tauriello DVF, Batlle E. Targeting the Microenvironment in Advanced Colorectal Cancer. Trends Cancer. 2016;2:495-504.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 66]  [Cited by in F6Publishing: 67]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
60.  Min HY, Cho J, Sim JY, Boo HJ, Lee JS, Lee SB, Lee YJ, Kim SJ, Kim KP, Park IJ, Hong SM, Zhang XL, Zhang ZG, Park RW, Lee HY. S100A14: A novel negative regulator of cancer stemness and immune evasion by inhibiting STAT3-mediated programmed death-ligand 1 expression in colorectal cancer. Clin Transl Med. 2022;12:e986.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 6]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
61.  Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H, Shang D. Gut microbiome: decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol. 2023;13:1299977.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
62.  Janssen JBE, Medema JP, Gootjes EC, Tauriello DVF, Verheul HMW. Mutant RAS and the tumor microenvironment as dual therapeutic targets for advanced colorectal cancer. Cancer Treat Rev. 2022;109:102433.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 15]  [Reference Citation Analysis (0)]
63.  Omrane I, Benammar-Elgaaied A. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim Biophys Acta. 2015;1856:28-38.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 16]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
64.  Li W, Jin X, Guo S, Xu F, Su X, Jiang X, Wang G. Comprehensive analysis of prognostic immune-related genes in the tumor microenvironment of colorectal cancer. Aging (Albany NY). 2021;13:5506-5524.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
65.  Ding Z, Han L, Zhang Q, Hu J, Li L, Qian X. Membrane Trafficking-Related Genes Predict Tumor Immune Microenvironment and Prognosis in Colorectal Cancer. Biochem Genet. 2024;62:1413-1427.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
66.  Kamal Y, Schmit SL, Frost HR, Amos CI. The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy. Immunotherapy. 2020;12:1083-1100.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 15]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
67.  Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett. 2019;458:123-135.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 31]  [Article Influence: 6.2]  [Reference Citation Analysis (0)]
68.  Gardner IH, Siddharthan R, Watson K, Dewey E, Ruhl R, Khou S, Guan X, Xia Z, Tsikitis VL, Anand S. A Distinct Innate Immune Signature of Early Onset Colorectal Cancer. Immunohorizons. 2021;5:489-499.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 4]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
69.  Bahrami A, Khazaei M, Hassanian SM, ShahidSales S, Joudi-Mashhad M, Maftouh M, Jazayeri MH, Parizade MR, Ferns GA, Avan A. Targeting the tumor microenvironment as a potential therapeutic approach in colorectal cancer: Rational and progress. J Cell Physiol. 2018;233:2928-2936.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 26]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
70.  Wu L, Zheng Y, Liu J, Luo R, Wu D, Xu P, Wu D, Li X. Comprehensive evaluation of the efficacy and safety of LPV/r drugs in the treatment of SARS and MERS to provide potential treatment options for COVID-19. Aging (Albany NY). 2021;13:10833-10852.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 34]  [Cited by in F6Publishing: 2]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
71.  Xu X, Ding C, Zhong H, Qin W, Shu D, Yu M, Abuduaini N, Zhang S, Yang X, Feng B. Integrative analysis revealed that distinct cuprotosis patterns reshaped tumor microenvironment and responses to immunotherapy of colorectal cancer. Front Immunol. 2023;14:1165101.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
72.  Wang Y, Li W, Jin X, Jiang X, Guo S, Xu F, Su X, Wang G, Zhao Z, Gu X. Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer. BMC Cancer. 2021;21:905.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 12]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
73.  Yang X, Cao Q, Ma B, Xia Y, Liu M, Tian J, Chen J, Su C, Duan X. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition. PLoS One. 2023;18:e0277155.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
74.  Xiong Y, Wang K, Zhou H, Peng L, You W, Fu Z. Profiles of immune infiltration in colorectal cancer and their clinical significant: A gene expression-based study. Cancer Med. 2018;7:4496-4508.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 113]  [Cited by in F6Publishing: 145]  [Article Influence: 24.2]  [Reference Citation Analysis (0)]
75.  Boukouris AE, Theochari M, Stefanou D, Papalambros A, Felekouras E, Gogas H, Ziogas DC. Latest evidence on immune checkpoint inhibitors in metastatic colorectal cancer: A 2022 update. Crit Rev Oncol Hematol. 2022;173:103663.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 29]  [Article Influence: 14.5]  [Reference Citation Analysis (0)]
76.  Lv Y, Tang W, Xu Y, Chang W, Zhang Z, Lin Q, Ji M, Feng Q, He G, Xu J. Apolipoprotein L3 enhances CD8+ T cell antitumor immunity of colorectal cancer by promoting LDHA-mediated ferroptosis. Int J Biol Sci. 2023;19:1284-1298.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 25]  [Reference Citation Analysis (0)]
77.  Dang Q, Liu Z, Liu Y, Wang W, Yuan W, Sun Z, Liu L, Wang C. LncRNA profiles from Notch signaling: Implications for clinical management and tumor microenvironment of colorectal cancer. Front Immunol. 2022;13:953405.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 1]  [Article Influence: 0.5]  [Reference Citation Analysis (0)]
78.  Zhang Y, Zhao Y, Li Q, Wang Y. Macrophages, as a Promising Strategy to Targeted Treatment for Colorectal Cancer Metastasis in Tumor Immune Microenvironment. Front Immunol. 2021;12:685978.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 14]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
79.  Wu L, Zhong Y, Wu D, Xu P, Ruan X, Yan J, Liu J, Li X. Immunomodulatory Factor TIM3 of Cytolytic Active Genes Affected the Survival and Prognosis of Lung Adenocarcinoma Patients by Multi-Omics Analysis. Biomedicines. 2022;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
80.  Fathi M, Pustokhina I, Kuznetsov SV, Khayrullin M, Hojjat-Farsangi M, Karpisheh V, Jalili A, Jadidi-Niaragh F. T-cell immunoglobulin and ITIM domain, as a potential immune checkpoint target for immunotherapy of colorectal cancer. IUBMB Life. 2021;73:726-738.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 23]  [Article Influence: 7.7]  [Reference Citation Analysis (0)]
81.  Chu Y, Zhang S, Wan W, Yang J, Zhang Y, Nie C, Xing W, Tong S, Liu J, Tian G, Wang B, Ji L. Pathological image profiling identifies onco-microbial, tumor immune microenvironment, and prognostic subtypes of colorectal cancer. APMIS. 2024;132:416-429.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
82.  Nussbaum YI, Manjunath Y, Suvilesh KN, Warren WC, Shyu CR, Kaifi JT, Ciorba MA, Mitchem JB. Current and Prospective Methods for Assessing Anti-Tumor Immunity in Colorectal Cancer. Int J Mol Sci. 2021;22.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 4]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
83.  Li YY, Wang XY, Li Y, Wang XM, Liao J, Wang YZ, Hong H, Yi W, Chen J. Targeting CD43 optimizes cancer immunotherapy through reinvigorating antitumor immune response in colorectal cancer. Cell Oncol (Dordr). 2023;46:777-791.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
84.  Li Y, Li Y, Xia Z, Zhang D, Chen X, Wang X, Liao J, Yi W, Chen J. Identification of a novel immune signature for optimizing prognosis and treatment prediction in colorectal cancer. Aging (Albany NY). 2021;13:25518-25549.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 2]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
85.  Zhu X, Fang H, Gladysz K, Barbour JA, Wong JWH. Overexpression of transposable elements is associated with immune evasion and poor outcome in colorectal cancer. Eur J Cancer. 2021;157:94-107.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 9]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
86.  Di Caro G, Marchesi F, Laghi L, Grizzi F. Immune cells: plastic players along colorectal cancer progression. J Cell Mol Med. 2013;17:1088-1095.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 59]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
87.  Plundrich D, Chikhladze S, Fichtner-Feigl S, Feuerstein R, Briquez PS. Molecular Mechanisms of Tumor Immunomodulation in the Microenvironment of Colorectal Cancer. Int J Mol Sci. 2022;23.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 10]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
88.  Ray AL, Nofchissey RA, Khan MA, Reidy MA, Lerner MR, Wu X, Guo S, Hill SL, Weygant N, Adams SF, Castillo EF, Berry WL, Stout MB, Morris KT. The role of sex in the innate and adaptive immune environment of metastatic colorectal cancer. Br J Cancer. 2020;123:624-632.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 15]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
89.  Chu B, Wang Y, Yang J, Dong B. Integrative analysis of single-cell and bulk RNA seq to reveal the prognostic model and tumor microenvironment remodeling mechanisms of cuproptosis-related genes in colorectal cancer. Aging (Albany NY). 2023;15:14422-14444.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Reference Citation Analysis (0)]
90.  Sun M, Ji X, Xie M, Chen X, Zhang B, Luo X, Feng Y, Liu D, Wang Y, Li Y, Liu B, Xia L, Huang W. Identification of necroptosis-related subtypes, development of a novel signature, and characterization of immune infiltration in colorectal cancer. Front Immunol. 2022;13:999084.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Reference Citation Analysis (0)]
91.  Shen X, Mo S, Wang Y, Lin L, Liu Y, Weng M, Gu W, Nakajima T. Single-cell dissection reveals the role of DNA damage response patterns in tumor microenvironment components contributing to colorectal cancer progression and immunotherapy. Genes Cells. 2023;28:348-363.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
92.  Wu L, Liu Q, Ruan X, Luan X, Zhong Y, Liu J, Yan J, Li X. Multiple Omics Analysis of the Role of RBM10 Gene Instability in Immune Regulation and Drug Sensitivity in Patients with Lung Adenocarcinoma (LUAD). Biomedicines. 2023;11.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
93.  Liu Z, Lu T, Li J, Wang L, Xu K, Dang Q, Liu L, Guo C, Jiao D, Sun Z, Han X. Clinical Significance and Inflammatory Landscape of aNovel Recurrence-Associated Immune Signature in Stage II/III Colorectal Cancer. Front Immunol. 2021;12:702594.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 34]  [Article Influence: 11.3]  [Reference Citation Analysis (0)]
94.  Busenhart P, Montalban-Arques A, Katkeviciute E, Morsy Y, Van Passen C, Hering L, Atrott K, Lang S, Garzon JFG, Naschberger E, Hartmann A, Rogler G, Stürzl M, Spalinger MR, Scharl M. Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in colorectal cancer. J Immunother Cancer. 2022;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 16]  [Article Influence: 8.0]  [Reference Citation Analysis (0)]
95.  Li M, Wang Z, Dong S, Xu Y. NAV3 Is a Novel Prognostic Biomarker Affecting the Immune Status of the Tumor Microenvironment in Colorectal Cancer. J Immunol Res. 2022;2022:8337048.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
96.  Miao YD, Wang JT, Yang Y, Ma XP, Mi DH. Identification of prognosis-associated immune genes and exploration of immune cell infiltration in colorectal cancer. Biomark Med. 2020;14:1353-1369.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 4]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
97.  Wu L, Zheng Y, Ruan X, Wu D, Xu P, Liu J, Wu D, Li X. Long-chain noncoding ribonucleic acids affect the survival and prognosis of patients with esophageal adenocarcinoma through the autophagy pathway: construction of a prognostic model. Anticancer Drugs. 2022;33:e590-e603.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 12]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
98.  Luan L, Dai Y, Shen T, Yang C, Chen Z, Liu S, Jia J, Li Z, Fang S, Qiu H, Cheng X, Yang Z. Development of a novel hypoxia-immune-related LncRNA risk signature for predicting the prognosis and immunotherapy response of colorectal cancer. Front Immunol. 2022;13:951455.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 6]  [Reference Citation Analysis (0)]
99.  Akin Telli T, Bregni G, Vanhooren M, Saude Conde R, Hendlisz A, Sclafani F. Regorafenib in combination with immune checkpoint inhibitors for mismatch repair proficient (pMMR)/microsatellite stable (MSS) colorectal cancer. Cancer Treat Rev. 2022;110:102460.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Reference Citation Analysis (0)]
100.  Zhu C, Wang S, Du Y, Dai Y, Huai Q, Li X, Du Y, Dai H, Yuan W, Yin S, Wang H. Tumor microenvironment-related gene selenium-binding protein 1 (SELENBP1) is associated with immunotherapy efficacy and survival in colorectal cancer. BMC Gastroenterol. 2022;22:437.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
101.  Tolba MF. Revolutionizing the landscape of colorectal cancer treatment: The potential role of immune checkpoint inhibitors. Int J Cancer. 2020;147:2996-3006.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 19]  [Cited by in F6Publishing: 20]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
102.  Yi B, Zhang S, Yan S, Liu Y, Feng Z, Chu T, Liu J, Wang W, Xue J, Zhang C, Wang Y. Marsdenia tenacissima enhances immune response of tumor infiltrating T lymphocytes to colorectal cancer. Front Immunol. 2023;14:1238694.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
103.  Sun L, Liu R, Wu ZJ, Liu ZY, Wan AH, Yan S, Liu C, Liang H, Xiao M, You N, Lou Y, Deng Y, Bu X, Chen D, Huang J, Zhang X, Kuang DM, Wan G. Galectin-7 Induction by EHMT2 Inhibition Enhances Immunity in Microsatellite Stability Colorectal Cancer. Gastroenterology. 2024;166:466-482.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Reference Citation Analysis (0)]
104.  Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, Jia HL, Zhang JB, Chen JH. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 2022;13:57.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 92]  [Article Influence: 46.0]  [Reference Citation Analysis (0)]
105.  Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs. 2022;33:943-959.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 8]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
106.  Mimura K, Kikuchi T, Kono K. [The Association between Intestinal Bacteria and Tumor Infiltrating Immune Cells in the Tumor Microenvironment of Colorectal Cancer]. Gan To Kagaku Ryoho. 2021;48:1093-1095.  [PubMed]  [DOI]  [Cited in This Article: ]
107.  He R, Huang S, Lu J, Su L, Gao X, Chi H. Unveiling the immune symphony: decoding colorectal cancer metastasis through immune interactions. Front Immunol. 2024;15:1362709.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Reference Citation Analysis (0)]
108.  Du F, Liu Y. Predictive molecular markers for the treatment with immune checkpoint inhibitors in colorectal cancer. J Clin Lab Anal. 2022;36:e24141.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 8]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
109.  Becht E, de Reyniès A, Giraldo NA, Pilati C, Buttard B, Lacroix L, Selves J, Sautès-Fridman C, Laurent-Puig P, Fridman WH. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin Cancer Res. 2016;22:4057-4066.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 325]  [Cited by in F6Publishing: 373]  [Article Influence: 46.6]  [Reference Citation Analysis (0)]
110.  Mizuno R, Kawada K, Sakai Y. Prostaglandin E2/EP Signaling in the Tumor Microenvironment of Colorectal Cancer. Int J Mol Sci. 2019;20.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 100]  [Article Influence: 20.0]  [Reference Citation Analysis (0)]
111.  Liu Y, Cheng L, Li C, Zhang C, Wang L, Zhang J. Identification of tumor microenvironment-related prognostic genes in colorectal cancer based on bioinformatic methods. Sci Rep. 2021;11:15040.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 12]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
112.  Wu L, Li H, Liu Y, Fan Z, Xu J, Li N, Qian X, Lin Z, Li X, Yan J. Research progress of 3D-bioprinted functional pancreas and in vitro tumor models. Int J Bioprinting. 2024;10:1256.  [PubMed]  [DOI]  [Cited in This Article: ]
113.  Patel SA, Gooderham NJ. IL6 Mediates Immune and Colorectal Cancer Cell Cross-talk via miR-21 and miR-29b. Mol Cancer Res. 2015;13:1502-1508.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 38]  [Cited by in F6Publishing: 46]  [Article Influence: 5.1]  [Reference Citation Analysis (0)]
114.  Zhang X, Huang Y, Li Q, Zhong Y, Zhang Y, Hu J, Liu R, Luo X. Senescence risk score: a multifaceted prognostic tool predicting outcomes, stemness, and immune responses in colorectal cancer. Front Immunol. 2023;14:1265911.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
115.  Li H, Zheng N, Guo A, Tang W, Li M, Cao Y, Ma X, Cao H, Ma Y, Wang H, Zhao S. FSTL3 promotes tumor immune evasion and attenuates response to anti-PD1 therapy by stabilizing c-Myc in colorectal cancer. Cell Death Dis. 2024;15:107.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
116.  Giannini R, Zucchelli G, Giordano M, Ugolini C, Moretto R, Ambryszewska K, Leonardi M, Sensi E, Morano F, Pietrantonio F, Cremolini C, Falcone A, Fontanini G. Immune Profiling of Deficient Mismatch Repair Colorectal Cancer Tumor Microenvironment Reveals Different Levels of Immune System Activation. J Mol Diagn. 2020;22:685-698.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
117.  Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel). 2024;12.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
118.  Liu Y, Wang Z, Hao H, Wang Y, Hua L. Insight into immune checkpoint inhibitor therapy for colorectal cancer from the perspective of circadian clocks. Immunology. 2023;170:13-27.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
119.  Nosho K, Sukawa Y, Adachi Y, Ito M, Mitsuhashi K, Kurihara H, Kanno S, Yamamoto I, Ishigami K, Igarashi H, Maruyama R, Imai K, Yamamoto H, Shinomura Y. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer. World J Gastroenterol. 2016;22:557-566.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 232]  [Cited by in F6Publishing: 244]  [Article Influence: 30.5]  [Reference Citation Analysis (3)]
120.  Zhao LP, Zheng RR, Rao XN, Huang CY, Zhou HY, Yu XY, Jiang XY, Li SY. Chemotherapy-Enabled Colorectal Cancer Immunotherapy of Self-Delivery Nano-PROTACs by Inhibiting Tumor Glycolysis and Avoiding Adaptive Immune Resistance. Adv Sci (Weinh). 2024;11:e2309204.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
121.  Camus M, Tosolini M, Mlecnik B, Pagès F, Kirilovsky A, Berger A, Costes A, Bindea G, Charoentong P, Bruneval P, Trajanoski Z, Fridman WH, Galon J. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69:2685-2693.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 183]  [Cited by in F6Publishing: 210]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
122.  Wu L, Chen X, Zeng Q, Lai Z, Fan Z, Ruan X, Li X, Yan J. NR5A2 gene affects the overall survival of LUAD patients by regulating the activity of CSCs through SNP pathway by OCLR algorithm and immune score. Heliyon. 2024;10:e28282.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
123.  Leowattana W, Leowattana P, Leowattana T. Systemic treatment for metastatic colorectal cancer. World J Gastroenterol. 2023;29:1569-1588.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 2]  [Cited by in F6Publishing: 2]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
124.  Curtis NJ, Primrose JN, Thomas GJ, Mirnezami AH, Ottensmeier CH. The adaptive immune response to colorectal cancer: from the laboratory to clinical practice. Eur J Surg Oncol. 2012;38:889-896.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 12]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
125.  Hong JH, Woo IS. Metronomic chemotherapy as a potential partner of immune checkpoint inhibitors for metastatic colorectal cancer treatment. Cancer Lett. 2023;565:216236.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 4]  [Reference Citation Analysis (0)]
126.  He C, Gu X, Dong C, Xu Z, Liu L, Jiang B, Lu Y, Jiang X, Lu Z. The association between ferroptosis-related patterns and tumor microenvironment in colorectal cancer. Int Immunopharmacol. 2024;134:112258.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
127.  Grizzi F, Bianchi P, Malesci A, Laghi L. Prognostic value of innate and adaptive immunity in colorectal cancer. World J Gastroenterol. 2013;19:174-184.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 49]  [Cited by in F6Publishing: 51]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
128.  Cai D, Wang W, Zhong ME, Fan D, Liu X, Li CH, Huang ZP, Zhu Q, Lv MY, Hu C, Duan X, Wu XJ, Gao F. An immune, stroma, and epithelial-mesenchymal transition-related signature for predicting recurrence and chemotherapy benefit in stage II-III colorectal cancer. Cancer Med. 2023;12:8924-8936.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
129.  Song W, Ren J, Xiang R, Kong C, Fu T. Identification of pyroptosis-related subtypes, the development of a prognosis model, and characterization of tumor microenvironment infiltration in colorectal cancer. Oncoimmunology. 2021;10:1987636.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 90]  [Article Influence: 30.0]  [Reference Citation Analysis (0)]
130.  Gomes S, Rodrigues AC, Pazienza V, Preto A. Modulation of the Tumor Microenvironment by Microbiota-Derived Short-Chain Fatty Acids: Impact in Colorectal Cancer Therapy. Int J Mol Sci. 2023;24.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 10]  [Reference Citation Analysis (0)]
131.  Miller S, Senior PV, Prakash M, Apostolopoulos V, Sakkal S, Nurgali K. Leukocyte populations and IL-6 in the tumor microenvironment of an orthotopic colorectal cancer model. Acta Biochim Biophys Sin (Shanghai). 2016;48:334-341.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 14]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
132.  Vornholz L, Isay SE, Kurgyis Z, Strobl DC, Loll P, Mosa MH, Luecken MD, Sterr M, Lickert H, Winter C, Greten FR, Farin HF, Theis FJ, Ruland J. Synthetic enforcement of STING signaling in cancer cells appropriates the immune microenvironment for checkpoint inhibitor therapy. Sci Adv. 2023;9:eadd8564.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 3]  [Reference Citation Analysis (0)]
133.  Lin PC, Chen HO, Lee CJ, Yeh YM, Shen MR, Chiang JH. Comprehensive assessments of germline deletion structural variants reveal the association between prognostic MUC4 and CEP72 deletions and immune response gene expression in colorectal cancer patients. Hum Genomics. 2021;15:3.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 1]  [Article Influence: 0.3]  [Reference Citation Analysis (0)]
134.  Wu L, Li X, Yan J. Commentary: Machine learning developed an intratumor heterogeneity signature for predicting prognosis and immunotherapy benefits in cholangiocarcinoma. Transl Oncol. 2024;45:101995.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
135.  Wu D, Hacking S, Vitkovski T, Nasim M. Superpixel image segmentation of VISTA expression in colorectal cancer and its relationship to the tumoral microenvironment. Sci Rep. 2021;11:17426.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 2]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
136.  Li M, Li W, Yang X, Wang H, Peng Y, Yin J, Lu Y, Liu L, Shang J, Zhao Q. An immune landscape based prognostic signature predicts the immune status and immunotherapeutic responses of patients with colorectal cancer. Life Sci. 2020;261:118368.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
137.  Hatthakarnkul P, Pennel K, Alexander P, van Wyk H, Roseweir A, Inthagard J, Hay J, Andersen D, Maka N, Park J, Roxburgh C, Thuwajit C, McMillan D, Edwards J. Histopathological tumour microenvironment score independently predicts outcome in primary operable colorectal cancer. J Pathol Clin Res. 2024;10:e12374.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
138.  Xie QK, Chen P, Hu WM, Sun P, He WZ, Jiang C, Kong PF, Liu SS, Chen HT, Yang YZ, Wang D, Yang L, Xia LP. The systemic immune-inflammation index is an independent predictor of survival for metastatic colorectal cancer and its association with the lymphocytic response to the tumor. J Transl Med. 2018;16:273.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 75]  [Article Influence: 12.5]  [Reference Citation Analysis (0)]
139.  Huang KC, Chiang SF, Lin PC, Hong WZ, Yang PC, Chang HP, Peng SL, Chen TW, Ke TW, Liang JA, Chen WT, Chao KSC. TNFα modulates PANX1 activation to promote ATP release and enhance P2RX7-mediated antitumor immune responses after chemotherapy in colorectal cancer. Cell Death Dis. 2024;15:24.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Reference Citation Analysis (0)]
140.  Liu C, Yu C, Song G, Fan X, Peng S, Zhang S, Zhou X, Zhang C, Geng X, Wang T, Cheng W, Zhu W. Comprehensive analysis of miRNA-mRNA regulatory pairs associated with colorectal cancer and the role in tumor immunity. BMC Genomics. 2023;24:724.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
141.  Li Y, Liu Y, Zhao N, Yang X, Li Y, Zhai F, Zang X, Cui W. Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by reprogramming the tumor immune environment in colorectal cancer. Cell Death Dis. 2020;11:753.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 12]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
142.  Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol. 2024;131:111876.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Reference Citation Analysis (0)]
143.  Li X, Wu D, Li Q, Gu J, Gao W, Zhu X, Yin W, Zhu R, Zhu L, Jiao N. Host-microbiota interactions contributing to the heterogeneous tumor microenvironment in colorectal cancer. Physiol Genomics. 2024;56:221-234.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
144.  Wang J, Yu S, Chen G, Kang M, Jin X, Huang Y, Lin L, Wu D, Wang L, Chen J. A novel prognostic signature of immune-related genes for patients with colorectal cancer. J Cell Mol Med. 2020;24:8491-8504.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 40]  [Article Influence: 10.0]  [Reference Citation Analysis (0)]
145.  Jiang M, Liu Y, Xu J, Xu Z, Ye T, Li S, Jiang C. Identification and Validation of the Glycolysis and Immune-related Gene Signature for Prognosis in Colorectal Cancer. Anticancer Res. 2024;44:117-131.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
146.  Wang C, Yan J, Yin P, Gui L, Ji L, Ma B, Gao WQ. β-Catenin inhibition shapes tumor immunity and synergizes with immunotherapy in colorectal cancer. Oncoimmunology. 2020;9:1809947.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 22]  [Article Influence: 5.5]  [Reference Citation Analysis (0)]
147.  Zhou J, Liu Y, Zhang Y, Ling F, Zheng J, Yao X, Lyu Z, Feng H, Li Y. Comprehensive analysis of a novel subtype of immune microenvironment-derived HPV-infected colorectal cancer. Microbes Infect. 2024;26:105315.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
148.  Han J, Wang Q, Li S, Yang J, Qiu Z, Fu W. Comprehensive analysis of basement membrane-related gene based on single-cell and bulk RNA sequencing data to predict prognosis and evaluate immune characteristics in colorectal cancer. Environ Toxicol. 2024;39:3367-3380.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
149.  Han N, Chang HJ, Yeo HY, Kim BC, Kim B, Park SC, Kim J, Park JW, Oh JH. Association of gut microbiome with immune microenvironment in surgically treated colorectal cancer patients. Pathology. 2024;56:528-539.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
150.  Li X, Pan J, Liu T, Yin W, Miao Q, Zhao Z, Gao Y, Zheng W, Li H, Deng R, Huang D, Qiu S, Zhang Y, Qi Q, Deng L, Huang M, Tang PM, Cao Y, Chen M, Ye W, Zhang D. Novel TCF21(high) pericyte subpopulation promotes colorectal cancer metastasis by remodelling perivascular matrix. Gut. 2023;72:710-721.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 8]  [Reference Citation Analysis (0)]
151.  Huang C, Zhou Y, Feng X, Wang J, Li Y, Yao X. Delivery of Engineered Primary Tumor-Derived Exosomes Effectively Suppressed the Colorectal Cancer Chemoresistance and Liver Metastasis. ACS Nano. 2023;17:10313-10326.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 14]  [Reference Citation Analysis (0)]
152.  Zhao S, Mi Y, Zheng B, Wei P, Gu Y, Zhang Z, Xu Y, Cai S, Li X, Li D. Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles. 2022;11:e12186.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 75]  [Article Influence: 37.5]  [Reference Citation Analysis (0)]
153.  Qi M, Fan S, Huang M, Pan J, Li Y, Miao Q, Lyu W, Li X, Deng L, Qiu S, Liu T, Deng W, Chu X, Jiang C, He W, Xia L, Yang Y, Hong J, Qi Q, Yin W, Liu X, Shi C, Chen M, Ye W, Zhang D. Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. J Clin Invest. 2022;132.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 27]  [Article Influence: 13.5]  [Reference Citation Analysis (0)]
154.  Fujimoto H, Saito Y, Ohuchida K, Kawakami E, Fujiki S, Watanabe T, Ono R, Kaneko A, Takagi S, Najima Y, Hijikata A, Cui L, Ueki T, Oda Y, Hori S, Ohara O, Nakamura M, Saito T, Ishikawa F. Deregulated Mucosal Immune Surveillance through Gut-Associated Regulatory T Cells and PD-1(+) T Cells in Human Colorectal Cancer. J Immunol. 2018;200:3291-3303.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 22]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
155.  Kitsou M, Ayiomamitis GD, Zaravinos A. High expression of immune checkpoints is associated with the TIL load, mutation rate and patient survival in colorectal cancer. Int J Oncol. 2020;57:237-248.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 43]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
156.  Trimaglio G, Sneperger T, Raymond BBA, Gilles N, Näser E, Locard-Paulet M, Ijsselsteijn ME, Brouwer TP, Ecalard R, Roelands J, Matsumoto N, Colom A, Habch M, de Miranda NFCC, Vergnolle N, Devaud C, Neyrolles O, Rombouts Y. The C-type lectin DCIR contributes to the immune response and pathogenesis of colorectal cancer. Sci Rep. 2024;14:7199.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
157.  Ahtiainen M, Wirta EV, Kuopio T, Seppälä T, Rantala J, Mecklin JP, Böhm J. Combined prognostic value of CD274 (PD-L1)/PDCDI (PD-1) expression and immune cell infiltration in colorectal cancer as per mismatch repair status. Mod Pathol. 2019;32:866-883.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 35]  [Article Influence: 7.0]  [Reference Citation Analysis (0)]
158.  Hou Y, Zhang R, Zong J, Wang W, Zhou M, Yan Z, Li T, Gan W, Lv S, Zeng Z, Yang M. Comprehensive Analysis of a Cancer-Immunity Cycle-Based Signature for Predicting Prognosis and Immunotherapy Response in Patients With Colorectal Cancer. Front Immunol. 2022;13:892512.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 2]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
159.  Dienstmann R, Villacampa G, Sveen A, Mason MJ, Niedzwiecki D, Nesbakken A, Moreno V, Warren RS, Lothe RA, Guinney J. Relative contribution of clinicopathological variables, genomic markers, transcriptomic subtyping and microenvironment features for outcome prediction in stage II/III colorectal cancer. Ann Oncol. 2019;30:1622-1629.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 134]  [Cited by in F6Publishing: 144]  [Article Influence: 28.8]  [Reference Citation Analysis (0)]
160.  Zou YF, Cai ZR, Chen YF, Rong YM, Wu XR, Yuan RX, He XS, Wu XJ, Lan P. [Comparison of local immune microenvironment between liver-metastasis colorectal cancer and non-liver-metastasis colorectal cancer]. Zhonghua Wei Chang Wai Ke Za Zhi. 2013;16:547-551.  [PubMed]  [DOI]  [Cited in This Article: ]
161.  Sibilio P, Belardinilli F, Licursi V, Paci P, Giannini G. An integrative in-silico analysis discloses a novel molecular subset of colorectal cancer possibly eligible for immune checkpoint immunotherapy. Biol Direct. 2022;17:10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
162.  Zhang Z, Huang L, Li J, Wang P. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system. BMC Bioinformatics. 2022;23:124.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 10]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
163.  Sun L, Wang J, Li Y, Kang Y, Jiang Y, Zhang J, Qian S, Xu F. Correlation of gasdermin B staining patterns with prognosis, progression, and immune response in colorectal cancer. BMC Cancer. 2024;24:567.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
164.  Fu X, Luo H, Zheng Y, Wang S, Zhong Z, Wang Y, Yang Y. CTLA-4 immunotherapy exposes differences in immune response along with different tumor progression in colorectal cancer. Aging (Albany NY). 2020;12:15656-15669.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 3]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
165.  Galon J, Fridman WH, Pagès F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883-1886.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 294]  [Cited by in F6Publishing: 306]  [Article Influence: 18.0]  [Reference Citation Analysis (0)]
166.  Sudoyo AW, Kurniawan AN, Kusumo GD, Putra TP, Rexana FA, Yunus M, Budiyati AD, Kurniawan D, Utama A, Utomo AR. Increased CD8 Tumor Infiltrating Lymphocytes in Colorectal Cancer Microenvironment Supports an Adaptive Immune Resistance Mechanism of PD-L1 Expression. Asian Pac J Cancer Prev. 2019;20:3421-3427.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 5]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
167.  Mowat C, Dhatt J, Bhatti I, Hamie A, Baker K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front Immunol. 2023;14:1190810.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
168.  Lin YC, Mahalingam J, Chiang JM, Su PJ, Chu YY, Lai HY, Fang JH, Huang CT, Chiu CT, Lin CY. Activated but not resting regulatory T cells accumulated in tumor microenvironment and correlated with tumor progression in patients with colorectal cancer. Int J Cancer. 2013;132:1341-1350.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 73]  [Cited by in F6Publishing: 82]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
169.  Montrose DC, Galluzzi L. Restored Ketosis Drives Anticancer Immunity in Colorectal Cancer. Cancer Res. 2022;82:1464-1466.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
170.  Tang J, Ming L, Qin F, Qin Y, Wang D, Huang L, Cao Y, Huang Z, Yin Y. The heterogeneity of tumour-associated macrophages contributes to the clinical outcomes and indications for immune checkpoint blockade in colorectal cancer patients. Immunobiology. 2024;229:152805.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
171.  Lee JJ, Chu E. Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy for Mismatch Repair Proficient (pMMR)/non-MSI-H Metastatic Colorectal Cancer. Clin Colorectal Cancer. 2018;17:258-273.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 37]  [Article Influence: 6.2]  [Reference Citation Analysis (0)]
172.  Li C, Weng J, Yang L, Gong H, Liu Z. Development of an anoikis-related gene signature and prognostic model for predicting the tumor microenvironment and response to immunotherapy in colorectal cancer. Front Immunol. 2024;15:1378305.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
173.  Cao X, Zhen M, Li L, Wu Z, Zhou C, Huo J, Su S, Xu Y, Jia W, Liao X, Sun Z, Li H, Wang C. Oral fullerene tablets for colorectal cancer therapy based on modulation of tumor inflammatory microenvironments. J Mater Chem B. 2022;10:9457-9465.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 3]  [Reference Citation Analysis (0)]
174.  Shang P, Yu L, Cao S, Guo C, Zhang W. An improved cell line-derived xenograft humanized mouse model for evaluation of PD-1/PD-L1 blocker BMS202-induced immune responses in colorectal cancer. Acta Biochim Biophys Sin (Shanghai). 2022;54:1497-1506.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
175.  Kim HS, Kim CG, Kim WK, Kim KA, Yoo J, Min BS, Paik S, Shin SJ, Lee H, Lee K, Kim H, Shin EC, Kim TM, Ahn JB. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers. Front Cell Infect Microbiol. 2023;13:1101291.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 4]  [Reference Citation Analysis (0)]
176.  Zhou X, Li D, Xia S, Ma X, Li R, Mu Y, Liu Z, Zhang L, Zhou Q, Zhuo W, Ding K, Lin A, Liu W, Liu X, Zhou T. RNA-based modulation of macrophage-mediated efferocytosis potentiates antitumor immunity in colorectal cancer. J Control Release. 2024;366:128-141.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
177.  Liu T, Han C, Hu C, Mao S, Sun Y, Yang S, Yang K. [Knockdown of IGF2BP2 inhibits colorectal cancer cell proliferation, migration and promotes tumor immunity by down-regulating MYC expression]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2023;39:303-310.  [PubMed]  [DOI]  [Cited in This Article: ]
178.  Brouwer-Visser J, Cheng WY, Bauer-Mehren A, Maisel D, Lechner K, Andersson E, Dudley JT, Milletti F. Regulatory T-cell Genes Drive Altered Immune Microenvironment in Adult Solid Cancers and Allow for Immune Contextual Patient Subtyping. Cancer Epidemiol Biomarkers Prev. 2018;27:103-112.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 20]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
179.  Hu L, Huang S, Chen G, Li B, Li T, Lin M, Huang Y, Xiao Z, Shuai X, Su Z. Nanodrugs Incorporating LDHA siRNA Inhibit M2-like Polarization of TAMs and Amplify Autophagy to Assist Oxaliplatin Chemotherapy against Colorectal Cancer. ACS Appl Mater Interfaces. 2022;14:31625-31633.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 14]  [Reference Citation Analysis (0)]
180.  Gulubova M, Chonov D, Aleksandrova E, Ivanova K, Ignatova MM, Vlaykova T. Interleukin-6-Positive Immune Cells as a Possible New Immunologic Marker Associated With the Colorectal Cancer Prognosis. Appl Immunohistochem Mol Morphol. 2024;32:233-243.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
181.  Ito F, Ku AW, Bucsek MJ, Muhitch JB, Vardam-Kaur T, Kim M, Fisher DT, Camoriano M, Khoury T, Skitzki JJ, Gollnick SO, Evans SS. Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer. PLoS One. 2015;10:e0143370.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 26]  [Cited by in F6Publishing: 30]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
182.  Shi R, Zhao K, Wang T, Yuan J, Zhang D, Xiang W, Qian J, Luo N, Zhou Y, Tang B, Li C, Miao H. 5-aza-2'-deoxycytidine potentiates anti-tumor immunity in colorectal peritoneal metastasis by modulating ABC A9-mediated cholesterol accumulation in macrophages. Theranostics. 2022;12:875-890.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 3]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
183.  Prall F, Hühns M. The PD-1 expressing immune phenotype of T cell exhaustion is prominent in the 'immunoreactive' microenvironment of colorectal carcinoma. Histopathology. 2017;71:366-374.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 15]  [Article Influence: 2.1]  [Reference Citation Analysis (0)]
184.  Nie H, Yu Y, Wang F, Huang X, Wang H, Wang J, Tao M, Ning Y, Zhou J, Zhao Q, Xu F, Fang J. Comprehensive analysis of the relationship between ubiquitin-specific protease 21 (USP21) and prognosis, tumor microenvironment infiltration, and therapy response in colorectal cancer. Cancer Immunol Immunother. 2024;73:156.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
185.  Krieg C, Weber LM, Fosso B, Marzano M, Hardiman G, Olcina MM, Domingo E, El Aidy S, Mallah K, Robinson MD, Guglietta S. Complement downregulation promotes an inflammatory signature that renders colorectal cancer susceptible to immunotherapy. J Immunother Cancer. 2022;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 5]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
186.  Buka D, Dvořák J, Richter I, Škrobánek P, Buchler T, Melichar B. Interactions Between Anti-Vegf Therapy and Antitumor Immunity as a Potential Therapeutic Strategy in Colorectal Cancer. Acta Medica (Hradec Kralove). 2019;62:127-130.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
187.  Niu L, Liu Y, Li N, Wang Y, Kang L, Su X, Xu C, Sun Z, Sang W, Xu J, Guo H, Shen S. Oral probiotics microgel plus Galunisertib reduced TGF-β blockade resistance and enhanced anti-tumor immune responses in colorectal cancer. Int J Pharm. 2024;652:123810.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
188.  Pagès F, Galon J, Fridman WH. The essential role of the in situ immune reaction in human colorectal cancer. J Leukoc Biol. 2008;84:981-987.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 82]  [Cited by in F6Publishing: 91]  [Article Influence: 5.7]  [Reference Citation Analysis (0)]
189.  Perillo F, Amoroso C, Strati F, Giuffrè MR, Díaz-Basabe A, Lattanzi G, Facciotti F. Gut Microbiota Manipulation as a Tool for Colorectal Cancer Management: Recent Advances in Its Use for Therapeutic Purposes. Int J Mol Sci. 2020;21.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 34]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
190.  Tang Y, Wei J, Ge X, Yu C, Lu W, Qian Y, Yang H, Fu D, Fang Y, Zhou X, Wang Z, Xiao Q, Ding K. Intratumoral injection of interferon gamma promotes the efficacy of anti-PD1 treatment in colorectal cancer. Cancer Lett. 2024;588:216798.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
191.  Dunne PD, O'Reilly PG, Coleman HG, Gray RT, Longley DB, Johnston PG, Salto-Tellez M, Lawler M, McArt DG. Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer. Oncotarget. 2016;7:36632-36644.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 10]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
192.  Sugimura N, Kubota E, Mori Y, Aoyama M, Tanaka M, Shimura T, Tanida S, Johnston RN, Kataoka H. Reovirus combined with a STING agonist enhances anti-tumor immunity in a mouse model of colorectal cancer. Cancer Immunol Immunother. 2023;72:3593-3608.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
193.  Ray SK, Mukherjee S. Molecular perspectives on systemic priming and concomitant immunity in colorectal carcinoma. J Egypt Natl Canc Inst. 2024;36:7.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
194.  Liu Y, Wang X. Tumor microenvironment-associated gene C3 can predict the prognosis of colorectal adenocarcinoma: a study based on TCGA. Clin Transl Oncol. 2021;23:1923-1933.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 4]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
195.  Jing ZL, Liu GL, Zhou N, Xu DY, Feng N, Lei Y, Ma LL, Tang MS, Tong GH, Tang N, Deng YJ. Interferon-γ in the tumor microenvironment promotes the expression of B7H4 in colorectal cancer cells, thereby inhibiting cytotoxic T cells. Sci Rep. 2024;14:6053.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
196.  Zhang L, Wang S, Wang Y, Zhao W, Zhang Y, Zhang N, Xu H. Effects of Hypoxia in Intestinal Tumors on Immune Cell Behavior in the Tumor Microenvironment. Front Immunol. 2021;12:645320.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 7]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
197.  van der Haar Àvila I, Zhang T, Lorrain V, de Bruin F, Spreij T, Nakayama H, Iwabuchi K, García-Vallejo JJ, Wuhrer M, van Kooyk Y, van Vliet SJ. Limited impact of cancer-derived gangliosides on anti-tumor immunity in colorectal cancer. Glycobiology. 2024;34.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
198.  Chen L, Jiang X, Li Y, Zhang Q, Li Q, Zhang X, Zhang M, Yu Q, Gao D. How to overcome tumor resistance to anti-PD-1/PD-L1 therapy by immunotherapy modifying the tumor microenvironment in MSS CRC. Clin Immunol. 2022;237:108962.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 3]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
199.  Shaler CR, Tun-Abraham ME, Skaro AI, Khazaie K, Corbett AJ, Mele T, Hernandez-Alejandro R, Haeryfar SMM. Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol Immunother. 2017;66:1563-1575.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 40]  [Article Influence: 5.7]  [Reference Citation Analysis (0)]
200.  Grenier SF, Khan MW, Reil KA, Sawaged S, Tsuji S, Giacalone MJ, Tian M, McGuire KL. VAX014, an Oncolytic Therapy, Reduces Adenomas and Modifies Colon Microenvironment in Mouse Model of CRC. Int J Mol Sci. 2023;24.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
201.  Ma Z, Sun Y, Yu Y, Xiao W, Xiao Z, Zhong T, Xiang X, Li Z. Extracellular vesicles containing MFGE8 from colorectal cancer facilitate macrophage efferocytosis. Cell Commun Signal. 2024;22:295.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
202.  Wang F, Long J, Li L, Zhao ZB, Wei F, Yao Y, Qiu WJ, Wu ZX, Luo QQ, Liu W, Quan YB, Lian ZX, Cao J. Mutations in the notch signalling pathway are associated with enhanced anti-tumour immunity in colorectal cancer. J Cell Mol Med. 2020;24:12176-12187.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 7]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
203.  Kasashima H, Fukui Y, Kitayama K, Miki Y, Yoshii M, Fukuoka T, Tamura T, Shibutani M, Toyokawa T, Ree S, Tanaka H, Yashiro M, Maeda K. [The Role of Cancer-Associated Fibroblasts in Modulating Tumor Immunity in Colorectal Cancer]. Gan To Kagaku Ryoho. 2023;50:958-959.  [PubMed]  [DOI]  [Cited in This Article: ]
204.  Bakhrebah MA, Nasrullah M, Abdulaal WH, Hassan MA, Siddiqui H, Al Doghaither H, Omar UM, Helmi N, Fallatah MM, Al-Ghafari AB, Khan MI, Choudhry H. High Expression of Pd-1 in Circulating Cells of Patients With Advanced Colorectal Cancer Receiving Adjuvant Therapy. Technol Cancer Res Treat. 2020;19:1533033820969446.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
205.  Li C, Li T, Niu K, Xiao Z, Huang J, Pan X, Sun Y, Wang Y, Ma D, Xie P, Shuai X, Meng X. Mild phototherapy mediated by manganese dioxide-loaded mesoporous polydopamine enhances immunotherapy against colorectal cancer. Biomater Sci. 2022;10:3647-3656.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 2]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
206.  Guo M, Luo B, Pan M, Li M, Zhao F, Dou J. MUC1 plays an essential role in tumor immunity of colorectal cancer stem cell vaccine. Int Immunopharmacol. 2020;85:106631.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 24]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
207.  Chen Q, Wang L, Song H, Xing W, Shi J, Li Y, Wang Z, Chen J, Xie N, Zhao W. Deficiency of SR-B1 reduced the tumor load of colitis-induced or APC(min) (/+) -induced colorectal cancer. Cancer Med. 2023;12:19744-19757.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Reference Citation Analysis (0)]
208.  Ai D, Liu G, Li X, Wang Y, Guo M. Calculation of immune cell proportion from batch tumor gene expression profile based on support vector regression. J Bioinform Comput Biol. 2020;18:2050030.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
209.  Maker AV, Ito H, Mo Q, Weisenberg E, Qin LX, Turcotte S, Maithel S, Shia J, Blumgart L, Fong Y, Jarnagin WR, DeMatteo RP, D'Angelica MI. Genetic evidence that intratumoral T-cell proliferation and activation are associated with recurrence and survival in patients with resected colorectal liver metastases. Cancer Immunol Res. 2015;3:380-388.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 26]  [Cited by in F6Publishing: 26]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
210.  Kawazu M. [Abnormalities of Major Histocompatibility Complex in Microsatellite Instability-High Colorectal Cancer]. Gan To Kagaku Ryoho. 2021;48:1185-1190.  [PubMed]  [DOI]  [Cited in This Article: ]
211.  Chen T, Li Q, Wu J, Wu Y, Peng W, Li H, Wang J, Tang X, Peng Y, Fu X. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol Immunother. 2018;67:1635-1646.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 103]  [Cited by in F6Publishing: 100]  [Article Influence: 16.7]  [Reference Citation Analysis (0)]
212.  Highton AJ, Girardin A, Bell GM, Hook SM, Kemp RA. Chitosan gel vaccine protects against tumour growth in an intracaecal mouse model of cancer by modulating systemic immune responses. BMC Immunol. 2016;17:39.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 19]  [Cited by in F6Publishing: 18]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
213.  Zhang F, Zhang R, Zong J, Hou Y, Zhou M, Yan Z, Li T, Gan W, Lv S, Yang L, Zeng Z, Zhao W, Yang M. Computational identification and clinical validation of a novel risk signature based on coagulation-related lncRNAs for predicting prognosis, immunotherapy response, and chemosensitivity in colorectal cancer patients. Front Immunol. 2023;14:1279789.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
214.  Elzefzafy WM, Abd Elrahman S, Mohmmed ZA, Atef N. Diagnostic utility of serum dipeptidyl peptidase (DPP- IV) /CD26 as a serum marker in Egyptian patients with colorectal cancer. J Immunoassay Immunochem. 2020;41:729-744.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 1]  [Article Influence: 0.3]  [Reference Citation Analysis (0)]
215.  Wu B, Tao L, Yang D, Li W, Xu H, He Q. Development of an Immune Infiltration-Related Eight-Gene Prognostic Signature in Colorectal Cancer Microenvironment. Biomed Res Int. 2020;2020:2719739.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 18]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]