Review Open Access
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Jan 15, 2023; 15(1): 36-54
Published online Jan 15, 2023. doi: 10.4251/wjgo.v15.i1.36
Traditional Chinese medicine for transformation of gastric precancerous lesions to gastric cancer: A critical review
Yi-Lin Zhong, Peng-Qian Wang, Dan-Li Hao, Feng Sui, Bing Li, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Feng-Bin Zhang, Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
ORCID number: Yi-Lin Zhong (0000-0001-5713-5772); Peng-Qian Wang (0000-0003-0547-4144); Dan-Li Hao (0000-0002-1146-6557); Feng Sui (0000-0002-1948-336X); Feng-Bin Zhang (0000-0002-9606-3000); Bing Li (0000-0002-4613-1327).
Author contributions: Zhong YL and Wang PQ contributed equally to this study; Li B and Wang PQ conceptualized the study; Wang PQ and Zhong YL wrote the initial manuscript; Hao DL, Sui F, and Zhang FB participated in the preparation of key figures and tables; all authors were involved in the critical revision
Supported by the National Natural Science Foundation of China, No. 81904064; Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences, No.CI2021A03804 and No. CI2021A05052; and Fundamental Research Funds for the Central Public Welfare Research Institutes, No. ZZ14-YQ-023, No. ZXKT21017, and No. ZXKT21024.
Conflict-of-interest statement: Authors declare no conflict of interests for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Bing Li, MD, Associate Research Scientist, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing 100700, China. libingtcm@163.com
Received: September 20, 2022
Peer-review started: September 20, 2022
First decision: November 15, 2022
Revised: December 6, 2022
Accepted: December 27, 2022
Article in press: December 27, 2022
Published online: January 15, 2023
Processing time: 111 Days and 23.7 Hours

Abstract

Gastric cancer (GC) is a common gastrointestinal tumor. Gastric precancerous lesions (GPL) are the last pathological stage before normal gastric mucosa transforms into GC. However, preventing the transformation from GPL to GC remains a challenge. Traditional Chinese medicine (TCM) has been used to treat gastric disease for millennia. A series of TCM formulas and active compounds have shown therapeutic effects in both GC and GPL. This article reviews recent progress on the herbal drugs and pharmacological mechanisms of TCM in preventing the transformation from GPL to GC, especially focusing on anti-inflammatory, anti-angiogenesis, proliferation, and apoptosis. This review may provide a meaningful reference for the prevention of the transformation from GPL to GC using TCM.

Key Words: Gastric cancer; Gastric precancerous lesions; Traditional Chinese medicine; Formulas; Pharmacological mechanism; Inflammation-cancer transformation

Core Tip: Precancerous lesions are precursors of gastric cancer (GC). The molecular mechanism of the transformation of precancerous lesions into GC remains unclear. This article reviews the mechanism of traditional Chinese medicine in the treatment of precancerous lesions and GC, and describes the relationship between the molecular mechanisms of Chinese medicine in treating these two pathological stages, providing a research idea for blocking GC progression through the gastric precancerous lesion stage.



INTRODUCTION

Gastric cancer (GC) is the fifth most commonly diagnosed cancer and the fourth leading cause of cancer-related death worldwide[1]. The direct cause of high mortality in GC is that early GC may occur without any specific symptoms and cannot be treated promptly[2]. Therefore, it is particularly important to prevent GC in early stage[3]. In the 19th century, Virchow proposed “the origin of cancer as a site of chronic inflammation”[4]. Mostly, gastric carcinogenesis is a chronic pathological process, from chronic superficial gastritis, atrophic gastritis, intestinal metaplasia (IM), gastric epithelial dysplasia (GED), to GC, which was demonstrated as the typical process of “inflammation-cancer transformation”[5]. IM and GED are the main pathological stages of gastric precancerous lesions (GPL)[6]. GPL is the last stage before the occurrence of GC. Once this stage is attained, the probability of GC increases by at least 10-fold[7,8]. Therefore, intervention of at the GPL stage and reversal of malignant transformation are of great importance for the prevention of GC. Currently, there is no recommended treatment for GPL in western medicine[9]. The only therapeutic treatment, endoscopic mucosal dissection, is applicable to cases of severe dysplasia and early GC[10]. Helicobacter pylori (H. pylori) eradication and supplementation with vitamins and minerals exert a positive effect on the treatment of GC; however, the current research is not sufficient to support their therapeutic effects on GPL[11].

Inflammation, angiogenesis, and proliferation are the three most important histological features of the transformation from GPL to GC[12-14]. Chronic inflammation is the core driver of GC[15,16]. Inflammation promotes angiogenesis, and its progression depends on the speed of angiogenesis[17,18]. Simultaneously, inflammatory cells are almost inseparable from tumor cells, and the proliferation of tumor cells is directly related to the promotion of inflammation[19]. Moreover, the microenvironment created by tumors can promote further proliferation of inflammatory cells[20]. Angiogenesis can also promote the proliferation of tumor cells[21]. Furthermore, the establishment of a large number of new blood vessels also means that the tumor is about to transition from the dormant to the malignant stage[22]. An important feature is that when the diameter of the tumor tissue is larger than 1-2 mm, it relies heavily on neovascularization to deliver nutrients and clear metabolic wastes in tumor cells[23]. Clinically, tumor angiogenesis is believed to be directly proportional to tumor malignancy[24]. Seeking drugs that regulate the proliferation, inflammation, and angiogenesis of GPL and GC may be a promising avenue for improving clinical efficacy and further drug discovery.

GPL is generally defined as “stomach distension” and “stomach pain”, according to traditional Chinese medicine (TCM) theory, with symptoms including fatigue and weakness, dizziness and wasting, grayish-yellow face, and a pale and dark tongue. TCM has been used for millennia to treat GPL. A series classical formula (fangjis) was documented in Treatise on Febrile Diseases, and Prescriptions of the Pharmacy Bureausuch, and showed curative effects for GPL. For example, the sijunzi decoction, which can be dated back to 1151 AD, was effective in treating both precancerous lesions[25,26] and GC[27,28]. Currently, a variety of traditional Chinese patent medicines, such as the Weiqi decoction[29], WeiFuChun (WFC)[30], and Weipixiao (WPX)[31] have been developed for GPL. Many clinical studies have also suggested that TCM can hinder the transformation process of inflammation and cancer, treat precancerous lesions and early GC, and improve the progression of advanced GC (Table 1). For instance, WFC is a Chinese herbal compound approved by the National Medical Products Administration to treat GPL. Clinical trials have shown that WFC can significantly improve the pathological conditions of patients with GPL compared to vitamin C, especially in the case of atrophy or IM[16]. Moreover, with the advantages of TCM in precancerous lesions and GC, TCM has received increasing attention, and a growing number of clinical studies have been registered at ClinicalTrials.gov, such as the Jianpi Yangzheng Xiaozheng decoction (NCT03823248) and Yiqi Wenyang Jiedu decoction (NCT05229809).

Table 1 Clinical trials of traditional Chinese medicine in treating gastric cancer and precancerous lesions.
Pathological stages
Ref.
Clinical drugs
Clinical sample size
Intervention
Control
Treatment duration
Outcome measures
GPLDeng et al[125], 2012Weining Granules120Weining GranulesWeifuchun tablets6 moOverall response; gastroscopically-determined response; pathologically-confirmed response; eradication of Hp; microvessel density in the gastric mucosa; VEGF; IL-2; IL-6; T lymphocyte subsets; immunoglobulins; symptom scores; QOL; adverse reactions
Bian et al[16], 2021Weifuchun (WFC)120WFC tabletsVitacoenzyme tablets6 moHistopathology of gastric tissues; intestinal microbiota; sensitivity and specifcity of diferent intestinal microbiota
Li et al[126], 2006Weiansan (WAS)76WeiansanWeifuchun tablets24 wkInflammation of gastric mucosa; degree of glandular atrophy; IM and dysplasia; Hp infection
NCT03823248MoLuoDan and Sanchi powder480Moluodan combined with Sanchi powderFolic acid tablets24 wkThe disappearance rate of dysplasia; Histopathological score; endoscopic findings score; main symptom score; the patient-reported outcome scale integrals
GCPan et al[128], 2020Jianpi Yangzheng Xiaozheng decoction210Chemotherapy combined with JPYZXZ decoctionChemotherapy24 wkOne-year survival rate; progression-free survival; overall survival; immune related hematology test; objective response rate; tumor makers; TCM syndrome points; fatigue scale; QOL scale
Xu et al[129], 2013Wei Chang’An399Chemotherapy combined with Wei Chang’An decoctionContinuously3 mo or moreSurvival trends; survival time
Shu et al[130], 2019Yiqi Huayu Jiedu decoction489Chemotherapy combined with YHJDChemotherapy6 mo or moreDisease-free survival rate; 5-yr survival rate; QOL; TCM symptoms
NCT05229809Yiqi Wenyang Jiedu prescription212Yiqi Wenyang Jiedu prescriptionSimulation agent of Yiqi Wenyang Jiedu prescription24 wkTwo-year disease-free survival rate; disease-free survival; overall survival; cumulative annual recurrence and metastasis rate for 1-3 yr; cumulative annual survival rate for 1-3 yr; Indexes related to fat distribution; visceral adiposity Index; tumor marker; peripheral blood inflammatory index; prognostic nutritional index; QOL of the patient; evaluation of the patient’s symptoms; medication compliance; percentage of participants with adverse events

Many experimental studies have investigated the efficacy and mechanisms of TCM. For example, WFC can increase the secretion of pepsin by inhibiting the MAPK signaling pathway, thereby regulating the weight of rats with GPL and improving histopathological changes in the gastric mucosa[32]. Another study showed that Ginsenoside Rb1 (GRb1), which is contained in WFC, can prevent the occurrence and progression of GPLs by reducing the protein expression and nuclear translocation of β-catenin, interfering with the interaction of β-catenin/TCF4, and inhibiting the transcriptional activity of downstream genes, including c-myc, Cyclin D1 and Birc5[33]. Therefore, it is important to study the effect of TCM on GPL to improve the clinical efficacy and transformation of drug research and development (R&D). In this study, we summarize the mechanisms and targets of TCM in the treatment of GPL and GC, with a particular focus on their action in the processes of inflammation, angiogenesis, cell proliferation, and apoptosis.

MECHANISM OF TCM IN THE TREATMENT OF GPL

The GPL stage is a critical stage in the development of GC. The intervention goal of GPL is to reverse malignant transformation and block the progression to GC. However, the molecular mechanisms underlying GPL have not yet been fully elucidated. Many TCMs have been shown to be effective in the treatment of GPL, focusing on the regulation of proliferation and apoptosis, anti-inflammation, and inhibition of angiogenesis (Tables 2 and 3, Figure 1).

Figure 1
Figure 1 A diagram of pathway targets of traditional Chinese medicine formulas and compounds for gastric precancerous lesions and gastric cancer. Targets involved in angiogenesis, inflammation, and proliferation and apoptosis were labelled grey, pink, and blue, respectively. Border of targets regulated in gastric precancerous lesions and gastric cancer stage were painted into green and yellow, respectively. The traditional Chinese medicine formulas and compounds regulating each target were labeled as “c” and “f”, respectively. Red and green background of “c” and “f” represent up- and down-regulation of the target, respectively. The details of number of these formulas and compounds were shown in Tables 2 and 3. HRAS: Harvey rat sarcoma viral oncogene homolog; HIF-1α: Hypoxia-inducible factor 1α; VEGF: Vascular endothelial growth factor; NF-ΚB: Noncanonical nuclear factor-kappaB; TNF-α: Tumour necrosis factor alpha; IL: Interleukin.
Table 2 In vitro and in vivo protective effects of active components of Chinese herbal medicine on gastric precancerous lesions and gastric cancer.
Pathological stages
Effect
No.
Ref.
Active component
Animal/cells
Pathways/targets
Gastric precancerous lesions (GPL)Anti-proliferation inducing apoptosisc1Wang et al[37], 2021ErianinGES-1 cellHRAS-PI3K-Akt↓; p-Gsk3β, MDM2, p21, CyclinD1↓
c2Zhu et al[38], 2021Epigallocatechin gallateMale Wistar rats, PLGC modelPI3K/Akt/mTOR↓; PTEN↑; PI3K, Akt, mTOR↓
c3Zeng et al[33], 2021Ginsenoside Rb1Sprague-Dawley rats, PLGC modelβ-catenin/TCF4↓; c-myc, cyclin, Birc5↓
c4Lv et al[131], 2022Ginsenoside Rg3Male Sprague-Dawley rats, PLGC model GPL cellTIGAR, G6PDH, NADP, GSH↓; ROS↑
Anti-inflammatoryc5Liu et al[50], 2020CalycosinMale (SD) rats, PLGC modelIntegrinβ1/NF-κB/DARPP-32; Integrinβ1, NF-κB, DARPP-32↑; STAT3↓
Anti-angiogenesisc5Liu et al[50], 2020CalycosinMale (SD) rats, PLGC modelIntegrinβ1/NF-κB/DARPP-32; Integrinβ1, NF-κB, DARPP-32↑; STAT3↓
c6Gao et al[58], 2022Atractylenolide IIIFemale SD rats, Gastric Precancerous, Lesions ModelHIF-1α, VEGF-A, DLL4↓
c4Zeng et al[120], 2022Ginsenoside Rg3Male Sprague Dawley rats, PLGC modelAGS cell, HGC-27 cellGLUT1, GLUT4↓
Inhibit glycolysis c4Liu et al[63], 2020Ginsenoside Rg3Male Atp4a/ C57Bl/6 mice, PLGC modelPI3K/Akt/mTOR↓; PI3K/Akt/miRNA-21↓; PI3K, AKT, mTOR, HIF-1α, miRNA-21↓; caspase-3↑
c7Zhang et al[65], 2018Astragaloside IVMale Sprague-Dawley rats, PLGC modelLDHA, MCT1, MCT4, HIF-1α, CD147, TIGAR↓; miRNA-34a, p53↑
Improvement of EMTC8Liao et al[68], 2023Gallic acidGES-1 cell, MC cellsWnt/β-catenin↓
Induce autophagyc7Cai et al[44], 2018Astragaloside IVSprague Dawley rats, PLGC modelBcl-2/Bax, p53, Beclin1, p62, ATG5, ATG12↓; caspase3↑
GCAnti-proliferation inducing apoptosisc9Xu et al[74], 2021NaringinSNU-1 cell, GES-1 cellPI3K/Akt↓; PI3K, Akt, Bcl-2↓; caspase 3, Bax↑
c10Yang et al[132], 2016Epigallocatechin-3-gallateSGC-7901 cells, Nude mouse tumour xenograft modelWnt/β-catenin↓; GSK3b, β-catenin↓
c11Lee et al[75], 2018PectolinarigeninAGS cell, MKN28 cell PI3K/Akt/mTOR↓; PI3K, p-Akt, mTOR, p-p70S6K, p-4EBP1↓
c10Fu et al[133], 2019Epigallocatechin-3-gallateSGC7901 cellVEGF, HIF-1α↓
c12Wang et al[77], 2020AloinHGC-27 cell, BGC-823 cellAkt/mTOR, Stat3, NF-κB↓; NOX2, ROS, Akt, mTOR, Stat3, IκBα, p65↓
c13Chen et al[109], 2020Betulinic acidBGC-823 cells, MNK45 cellsNF-κB, VASP↓
c14Geng et al[134], 2018Usnic acidBGC823 cell, SGC7901 cellBax, LC3-II↑; Bcl-2, p62↓
c15Xu et al[135], 2020T-17SGC-7901, AGS cell, MGC-803 cell, BGC-823 cell, NCI-N87 cell,HUVEC cellJNK, Bcl-2↑
c16Liu et al[81], 2015PonicidinMKN28 cellJAK2/STAT3↓; Bcl-2, VEGF, VEGFR2, JAK2 STAT3↓; Bax, caspase-3↑
c17Chen et al[136], 2012Tanshinone IIAMKN45 cell, SGC7901 cell cyto-c, Bax, Caspase-9↑; Bcl-2↓
c18Yang et al[52], 2020TomentosinGCCs cell, AGS cell IL-6, TNF-α, IL-1, IL-8, Bcl-2↓; Bax↑
c19Sun et al[137], 2007SwainsonineSGC-7901 cell, BALB/c nu/nu mice, GC modelp53, Bcl-2↓; cmyc↑
c20Tang et al[82], 2019MicheliolideAGS cell, N87 cellIL-6, STAT3, cyclinD1, Mcl-1, MMP-2↓
c21Li et al[138], 2013AndrographolideBGC-823 cellBax, caspasase-3↑; Bcl-2↓
c22Liu et al[139], 2016CurcuminSGC7901 cell, GES-1 cellc-Myc/H19↓; c-Myc, H19↓; p53↑
c23Lee et al[140], 2016QuercetinNOD/SCID mice, PLGC model SNU719 cell, MKN74 cellsp53, p21, Bax, Puma, caspase-3, caspase-9, PARP↑
c4Aziz et al[121], 2016Ginsenoside Rg3SGC-7901 cellCaspases-3, caspase-8, caspase-9, PARP, SP1↑; HSF1, FUT4↓
c24Saralamma et al[141], 2015PoncirinAGS cellsFasl, caspase-8, caspase-3, PARP↑
Anti-inflammatoryc18Yang et al[52], 2020TomentosinGCCs cell, AGS cellIL-6, TNF-α, IL-1, IL-8, Bcl-2↓; Bax↑
c25Tharmalingam et al[115], 2016PiperineAGS cellβ-catenin, IL-8↓
c26Su et al[53], 2019ArtemisininSGC-7901 cell, GES-1 cells, C57BL/6 J miceNF-κB↓; IL-8, IL-6, TNF-α, IL-1β, COX-2, p-IκBα↓; IκBα↑
c27Han et al[54], 2015Rosmarinic acidMKN45 cellIL-6/STAT3↓; IL-6, IL-1β, TNF-α, TNFsR-1, HIF-1α, miRNA-155-5p↓; IL-10↑
c28Sun and Meng[55], 2022ScutellarinAGS cell, albino Wistar rats, GC modelrTNF-α, IL-1β, IL-2↓
Anti-angiogenesisc4Li and Qu[89], 2019Ginsenoside Rg3BGC823 cellHIF 1α, VEGF↓
Inhibit glycolysisC29Wang et al[142], 2022Licochalcone AMKN45 cell, SGC7901cell, GES-1 cellAkt/HK2↓; Akt, HK2↓
C30Chen et al[96], 2015BaicaleinAGS cellPTEN/Akt/HIF-1α↓; HK2, LDH-A, PDK1, Akt, HIF-1α↓; PTEN↑
C31Wang et al[142], 2022HelichrysetinMGC803 cell, HCT-8 cellmTOR/p70S6K/c-Myc/PDHK1↓; mTOR/p70S6K, c-Myc, PDHK1↓
C27Han et al[54], 2015Rosmarinic acidMKN45 cellIL-6/STAT3↓; IL-6, IL-1β, TNF-α, TNFsR-1, HIF-1α, miRNA-155-5p↓; IL-10↑
Improvement of EMTC32Wang et al[99], 2022Poria acidAGS cell, MKN-28 cell E-cadherin↑; N-cadherin, Vimentin↓
C33Zang et al[143], 2017LuteolinNCI-N87 cell, MKN28 cell, Hs-746T cellE-cadherin↑; N-cadherin, vimentin, Snail↓
c34Zhou et al[108], 2019CrocinAGS cell, HGC-27 cell, GES-1 cellmiR-320/KLF5/HIF-1α; KLF5/HIF-1α; KLF5, HIF-1α↓; miR-320↑
c7Zhu and Wen, 2020[144], 2018Astragaloside IVBGC-823 cell, MKN-74 cell, GES-1 cellPI3K/Akt/NF-κB↓; TGF-β1↓
Regulate immune functionc35Zhuang et al[105], 2020SophoridineMFC cell, RAW264.7 celliNOS, IFN-β, IL-12α, Granzyme-B, TNF-α, Perforin↑; Arg-1, CD206, IL-10, PD-1, Tim-3, Lag-3, CCR2↓
C36Lu et al, 2021[104]Oleanolic acidMKN-45, Jurkat T cellIL-1β/ NF-κB /TET3↓; PD-L1↓
Induce autophagyc11Lee et al, 2018[75]PectolinarigeninAGS cell, MKN28 cell PI3K/Akt/mTOR↓; PI3K, p-Akt, mTOR, mTOR, p-p70S6K, p-4EBP1↓
c14Geng et al[134], 2018Usnic acidBGC823 cell, SGC7901 cell Bax, LC3-II↑; Bcl-2, p62↓
c15Xu et al[135], 2020T-17SGC-7901, AGS, MGC-803, BGC-823, NCI-N87, HUVEC cellJNK, Bcl-2↑
Inhibits migration, and invasionc12Wang et al[77], 2020AloinHGC-27 cell, BGC-823 cell Akt/mTOR, Stat3, NF-κB↓; NOX2, ROS, Akt, mTOR, Stat3, IκBα, p65↓
c13Chen et al[109] , 2020Betulinic acidBGC-823 cells, MNK45 cellsNF-κB, VASP↓
c34Zhou et al[108], 2019CrocinAGS cell, HGC-27 cell, GES-1 cellmiR-320/KLF5/HIF-1α; KLF5/HIF-1α; KLF5, HIF-1α↓; miR-320↑
c37Cai et al[110], 201818β-glycyrrhetinic acidSGC-7901 cellROS/PKC-α/ERK↓; ROS, PKC-α, ERK↓
c30Yan et al[111], 2015BaicaleinSGC7901 Cell, MGC803 cellMMP-2, mmp-9, p38↓
Anti-Helicobacter pyloric25Tharmalingam et al[115], 2016PiperineAGS cell linesβ-catenin, IL-8↓
c26Su et al[53], 2019ArtemisininSGC-7901 cell, GES-1 cellsNF-κB↓; IL-8, IL-6, TNF-α, IL-1β, COX-2, p-IκBα↓; IκBα↑
c28Sun and Meng[55], 2022Scutellarin(AGS) cell, albino Wistar rats, GC modelTNF-α, IL-1β, IL-2↓
Table 3 In vitro and in vivo protective effects of Chinese herbal compound on gastric precancerous lesions and gastric cancer.
Pathological stages
Effect
No.
Ref.
Formulas
Main component
Animal/cells
Pathways/targets
GPLAnti-proliferation inducing apoptosisfaZeng et al[31], 2016Weipixiao (WPX)Radix Astragali, Radix Pseudostellariae, Rhizoma Atractylodis Macrocephalae, Radix Salviae Miltiorrhiz, Herba Hedyotis DiffusaeMale SD rats, PLGC modelWnt/β-catenin↓; Lgr5, MMP-7, Wnt1, β-catenin↓
faZeng et al[145], 2018Weipixiao (WPX)Astragalus Membranaceus, Pseudostellaria Heterophylla, Atractylodis Macrocephalae, Curcuma zedoaria, Salvia Miltiorrhiza and Hedyotis Diffusa WilldMale SD rats, PLGC modelWnt/GSK3β; GSK3β↑; C-myc↓
fbYin et al[29], 2019Weiqi decoction (WQD)Radix Angelicae Sinensis, Radix Astragali, Radix Codonopsis, Rhizoma Curcumae, Fructus Aurantii, Fructus Akebiae and Herba TaraxaciMale Wistar rats, CAG with Precancerous Lesion ModePGE2, caspase-3↑; Ki67, HIF-1, COX-2, VEGF, VEGFR1↓
fcCai et al[146], 2022Sancao Tiaowei DecoctionPseudostellariae Radix, stirbaked Atractylodis Macrocephalae Rhizoma inbran, Poria, Agrimoniae Herba, Taraxaci Herba, Hedyotis Diffusa Willd, Salviae Miltiorrhizae Radix Etrhizoma, Curcumae Rhizoma and Glycyrrhizae Radix Et RhizomaSD male rats, PLGC modelHh signaling↓; Shh, Gli-1, Smo, cyclinD1, CDKN2A/p16INK4a, NF-κB P65↓; Ptch↑
fdHao et al[147], 2022Huazhuojiedu decoctionArtemisia capillaris Thunb, Scutellaria baicalensis Georgi, Oldenlandia diffusa Roxb, Isatis indigotica Fortune, Lobelia chinensis Lour, Pogostemon cablinBenth, Scutellaria barbata D. Don, Sophora flavescens Aiton, Coptis chinensis Franch, Gynostemma pentaphyllum Makino, and Eupatorium fortunei TurczMale SD rats, PLGC modelLnc 517368↓
feXu et al[148], 2018Xiao Tan He Wei DecoctionRadix bupleuri, processed rhizomapinelliae, poriacocos, coptischinensis, oldenlandiadiffusa, dandelion,cassia twig, rhubarb, radix paeoniae alba, radix glycyrrhizae preparataGES-1 cell, Wistar rats, PLGC rat animal modelsBax, caspase-3↑; Bcl-2, NF-κB↓
ffShen et al[149], 2008Jinguo Weikang Capsule (JWC)Tinospora root, trifoliate-orange Immature fruit, kaempfer dutchmanspipe rootSD rats, PLGC modelH-ras, EGFR, P53, c-myc↓
Anti-inflammatoryfbYin et al[29], 2019Weiqi decoction (WQD)Radix Angelicae Sinensis, Radix Astragali, Radix Codonopsis, Rhizoma Curcumae, Fructus Aurantii, Fructus Akebiae, and Herba TaraxaciMale Wistar rats, CAG with Precancerous Lesion ModePGE2, caspase-3↑; Ki67, HIF-1, COX-2, VEGF,VEGFR1↓
fgDeng et al[125], 2012Weining granuleRadix Astragali Mongolici, Herba Hedyotdis, Rhizoma Curcumae Phaeocau, Fructus LyciiMale Wistar rats, PLGC modelVEGF, IL-6, IgG↓; CD4+, CD4+/CD8+, IL-2↑
Anti-angiogenesisfbYin et al[29], 2019Weiqi decoction (WQD)Radix Angelicae Sinensis, Radix Astragali, Radix Codonopsis, Rhizoma Curcumae, Fructus Aurantii, Fructus Akebiae, and Herba TaraxaciMale Wistar rats, CAG with Precancerous Lesion ModePGE2, caspase 3↑; Ki67, HIF-1, COX-2, VEGF,VEGFR1↓
faZeng et al[59], 2018Weipixiao (WPX)Astragalus Membranaceus, Pseudostellaria Heterophylla, Atractylodis Macrocephalae, Curcuma zedoaria, Salvia Miltiorrhiza and Hedyotis Diffusa WilldMale SD rats, PLGC modelERK1/CylinD1; HIF-1α, VEGF, ERK1, CylinD1↓
fhWang et al[150], 2020Jinlongshe (JLS)Rhizoma Pinelliae, Radix, Rhizome Arisaemat, Glycyrrhizaepreparata, corium stomachiumgalli, etc.Male SD rats, PLGC modelApelin, CD34↓
Protecting gastric mucosafiYi et al[151], 2022Elian granulesCurcumae Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Angelicae Sinensis, Diels, Coptidis Rhizoma, Hedyotis Diffusa, Codonopsis Radix, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma, Pinelliae Rhizoma, Citri Reticulatae Pericarpium, PoriaMale SD rats, PLGC modelMAPK; JNK, p38↑
fjWang et al[32], 2020WeiFuChun (WFC)Radix Ginseng Rubra (red ginseng), Rabdosia amethystoides H. Hara, and fried Fructus AurantiiMale SD rats, PLGC modelMAPK; VEGF, FOXO4, AKT, TP53, FAS, MAPK8, MAPK11, MAPK14↓
Inhibit glycolysisfaCai et al[64], 2019Weipixiao (WPX)Astragalus, Radix Pseudostellariae, Atractylodes macrocephala, Salvia miltiorrhiza Bge, Oldenlandia diffusa(Willd.)RoxbMale SD rats, PLGC modelmiRNA-34a/PI3K/AKT/Mtor; LDHA, CD147, MCT4, PI3K, AKT, mTOR, HIF-1α, miRNA-34a↓
fkLiu et al[152], 2019Weipiling (WPL)Hedysarum multijugum Maxim, Pseudostellaria heterophylla Pax, Atractylodes macrocephala Koidz, Poria cocos Wolf, Panax notoginseng F.H. Chen, Curcuma zedoaria, Roscoe,Hedyotis diffusa Willd,Hericium erinaceus PersMale Atp4a-/-C57Bl/6 micemTOR/HIF-1α↓; CDX2, MUC2, ki-67, PTEN and p53, mTOR, HIF-1a, AMPK↓; TSC1, TSC2↑
Improvement of EMTflLi et al[69], 2022Manpixiao decoctionHeterophylla falsestarwort root, root of red rooted salvia, drug solomonseal, common perilla stem, largehead atractylodes rhizome, corydalis ambigua, japanese apricot fruit, citron, rose, villous amomum fruit, spreading hedyotis herb, liquoriceWistar male rats, PLGC modelEGFR-PI3K-AKT↓; EGFR, β-catenin, N-cadherin protein↓
GCAnti-proliferation inducing apoptosisfmHe et al[76], 2020WeifufangAstragalus, Codonopsis pilosula, Atractylodes macrocephala, Poria cocos, Nutgrass Galingale Rhizome, Radix Curcumae, Sappan Wood, Rhizoma Curcumae, Zaoxiu Paris Root Rhizoma Paridis, Barbed Skullcap Herb, Ligustrum lucidum, South Dodder Seed, Oldenlandia, Liquorice Root, Chicken’s Gizzard-membrane, fry malt, and fry Rice-grain SproutBALB/c-nu nude mice, BGC-823 cell, Nude mice with xenograftsPTEN↑
fnFang et al[153], 2021Huosu Yangwei (HSYW)Huoxiang, Zisugeng, Baizhu, Zhike, Doukou, Foshou, Wumei, Shengjiang, Dazao, Gancao, Huangqi, Dihuang, Mudanpi, Tianhuafen, Danggui, Chuanxiong, Ezhu, Gouqizi, Huanglian, Dangsheng, and PugongyingMale Balb/c mice, PLGC modelDNAJB4, CALD1, AKR1C1, CST1, CASP1, PREX1, SOCS3, PRDM1
foYuan et al[154], 2020Jianpi Yangzheng Xiaozheng (JPYZXZ) decoctionRadix astragali, Radix codonopsis pilosulae, Rhizoma Sparganiiand Rhizoma CurcumaeHGC-27 cells ,THP-1 cell, MFC cellPI3Kγ, NF-κB, AKT, p-C/EBPβ, IL-10↓; IL-1β, TNF-α, IL-12p↑
fgDeng et al[92], 2019Weining granuleRadix Astragali Mongolici and Herba Hedyotdis Rhizoma Curcumae Phaeocaulis,Fructus LyciiMale Wistar rats, PLGC modelBcl-2, VEGF↓; caspase-3, PTEN↑
Anti-inflammatoryfpLi et al[155], 2021Guiqi Baizhu prescriptionAstragali radix, Atractylodis macrocephalae, Angelicae,Paeoniae radix alba, Pericarpium citri reticulatae, Rhubarb, GlycyrrhizaeMKN-45 cell, SGC-7901 cell, BGC-823 cell, GES-1cellHER2, PD-L1↑
Anti-angiogenesisfgDeng et al[92], 2019Weining granuleRadix Astragali Mongolici and Herba Hedyotdis Rhizoma Curcumae Phaeocaulis, Fructus LyciiMale Wistar rats, PLGC modelBcl-2, VEGF↓; caspase-3, PTEN↑
Improvement of EMTfqLiu et al[100], 2020Babao DanNatural bezoar, snake gall, antelope horn, pearl, musk, and Panax notoginsengAGS cell, MGC803 cellTGF-b/Smad↓; TGF-b1, p-Smad2/3↓
foYuan et al[154], 2020Jianpi Yangzheng Xiaozheng (JPYZXZ) decoctionRadix astragali, Radix codonopsis pilosulae, Rhizoma Sparganiiand Rhizoma CurcumaeHGC-27 cells, THP-1 cell, MFC cellPI3Kγ, NF-κB, AKT, p-C/EBPβ, IL-10↓; IL-1β, TNF-α, IL-12p↑
Inhibits migration, and invasionfrChen et al[112], 2018Yangzheng Sanjie Decoction (YZSJD)Astragali Radix, Scutellariae Barbatae, Herba, Arisaematis Rhizoma Preparatum, Citri Sarcodactylis, Fructus, Cremastrae Pseudobulbus and Curcumae Longae, RhizomaMKN-45 cellEGFR, miR-7↑
Regulating proliferation and apoptosis related to GPL

In GPL and GC, the imbalance between proliferation and apoptosis of gastric epithelial cells may be the direct cause of malignant progression[34]. The PI3K/Akt/mTOR signaling pathway can regulate growth in normal cells and in cancers, and the activation of the Akt pathway through PI3K is directly related to tumorigenesis[35]. Pathological changes in the PI3K/Akt/mTOR pathway usually include downregulation of the tumor suppressor gene PTEN, abnormal activation of PI3K, and overexpression/hyperactivation of Akt[36]. Erianin, which is one of the most important natural compounds in Dendrobium, can be directly extracted from Dendrobium. Moreover, dendrobium species are widely used to treat various digestive diseases. Wang et al[37] confirmed that Erianin can significantly reduce Harvey rat sarcoma viral oncogene homolog (HRAS), thereby inhibiting the downstream PI3K/Akt signal pathway; hence, it plays a role in the treatment of precancerous lesions. Green tea polyphenols have been recognized for their anti-GC effects. Epigalocatein gallate is the main component of green tea polyphenols. Similarly, Zhu et al[38] found that epigallocatechin gallate inhibits the downstream PI3K/Akt/mTOR signaling pathway by promoting PTEN expression. This process achieves a balance between cell proliferation and apoptosis. The Wnt/β-catenin signaling pathway is a conserved pathway that plays an important role in maintaining intracellular homeostasis[39]. Inappropriate activation of the Wnt/β-catenin signaling pathway often occurs in GPL gastric epithelial cells, which may be one of the reasons for the transition from GPL to GC[40,41]. Weipixiao is a TCM compound that is found in Radix Astragali, Radix Pseudostellariae, Rhizoma Atractylodis Macrocephalae, Radix Salviae Miltiorrhiz, Herba Hedyotis Diffusae, and other TCMs. It is widely used for the management of GPL in clinical practice. Zeng et al[33] found that Weipixiao can inhibit cell proliferation and induce apoptosis by inhibiting abnormal activation of the Wnt/β-catenin signaling pathway, while GRb1 can inhibit β-catenin protein expression. Downstream targets, such as c-myc, Cyclin D1, Lgr5, MMP-7, and Birc5, in this pathway are inhibited. Autophagy is an intracellular catabolic process[42]. Current research shows that promoting autophagy in the early stages of tumorigenesis has a positive significance in cancer treatment[43]. The Chinese medicine monomer, Astragaloside IV (As-IV), regulates autophagy by mediating the Ambra1/Beclin1 complex[44].

Regulating inflammation signaling pathways of GPL

Inflammation is the key to the progression of GPL to GC. Currently, it is generally believed that the noncanonical nuclear factor-kappaB (NF-κB) and STAT3 signaling pathways are the two major signaling pathways that connect inflammation and cancer, and they link inflammation and cancer through synergistic action[45,46]. As one of the most important signaling pathways in the inflammatory response[47], the NF-κB signaling pathway can lead to the transcriptional activation of many pro-inflammatory mediators, including tumour necrosis factor alpha (TNF-α), interleukin-8 (IL-8), and IL-6[48]. Because it also regulates cell proliferation, angiogenesis, metabolism, inflammation, and cell migration and is in the key position of these mechanism-related pathways, it is not difficult to explain why this pathway has become the most important bridge connecting GPL and GC[49]. Calycosin may play an anti-inflammatory role by regulating the integrin β1/NF-κB/DARPP-32 pathway and downregulating STAT3 expression[50]. The upregulated expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α) in cells under hypoxic conditions lead to an inflammatory reaction[51]; therefore, WQD can play an anti-inflammatory role by inhibiting the HIF-1 signaling pathway[29].

In addition, TCM monomers and compounds can regulate various inflammatory factors. TCM monomers and compounds can also regulate a variety of inflammatory factors, including IL-6, TNF-α, IL-1, IL-8, COX-2, and IL-2. Among these, TNF-α, IL-6, and IL-8 can be regulated by more than three types of Chinese herbs. For example, TNF-α can be regulated by Tomentosin[52], artemisinin (ART)[53], rosmarinic acid (RA)[54], scutellarin (SC)[55].

Inhibition of angiogenesis signaling pathways and targets of GPL

HIF-1α binds to the target gene VEGF, and then leads to the transcription of Pro angiogenic protein, which is an important reason for the formation of new blood vessels, or neovasculogenesis[56,57]. Therefore, stabilizing the HIF-1α/VEGF pathway is of great significance for improving angiogenesis under hypoxic conditions. A study showed that early angiogenesis in GPL tissue is accompanied by HIF-1α and VEGF-A activation[58]. Both atractylenolide III (ATIII)[58] and WPX[59] can inhibit the HIF-1α/VEGF signaling pathway, and WPX can also inhibit the downstream targets of the pathway, such as ERK1/Cyclin D1. It then plays a role in angiogenesis inhibition.

OTHER MECHANISMS OF ACTION IN THE TREATMENT OF GPL
Regulate GPL related metabolism

Metabolic disorder is a hallmark of GC, the most significant of which are disorders of glucose metabolism[60]. In contrast to normal cells, GC cells preferentially choose glycolysis as the main way to obtain energy, even under conditions of sufficient oxygen[61]. The rapid proliferation of GC cells depends largely on glycolysis[62]. Studies have found that glycolysis also occurs in GPL; therefore, glycolysis is likely to be one of the key points in the transition from GPL to GC[63]. Ginsenoside Rg3 (GRg3) blocks glycolysis by inhibiting the PI3K/AKT pathway and downregulating downstream miRNA-21[63], whereas WPX inhibits the PI3K/AKT/mTOR pathway by upregulating upstream miRNA-34a, and then blocks glycolysis[64]. Interestingly, both WPX and As-IV can regulate LDHA, MCT4, HIF-1α, and CD147 targets inhibits glycolysis[65].

Reverse GPL related epithelial-mesenchymal transition

Epithelial-mesenchymal transformation (EMT) refers to the transformation of epithelial cells into mesenchymal cells under specific conditions. EMT is a physiological process that occurs during tissue self-repair[66]. When it is out of control, it may lead to fibrosis, angiogenesis, loss of normal organ function, and cancer, making it one of the key characteristics of GC[67]. Gallic acid (GA) is found in many TCMs. As early as 1552 AD, the Compendium of Materia Medica recorded the method for obtaining GA and its medicinal properties. Liao et al[68] found that GA can inhibit the EMT process by downregulating the Wnt/β-catenin signaling pathway, thereby inhibiting the malignant proliferation of MC cells and finally achieving the goal of treating GPL. The Manpixiao Decoction is a compound used in Chinese medicine. Li et al[69] confirmed that this compound could inhibit the progression of PLGC by reducing the occurrence of systemic inflammatory reactions in the local gastric mucosa and inhibiting the EGFR-PI3K-AKT related EMT pathway.

MECHANISM OF TCM IN THE TREATMENT OF GC

A variety of TCM formulas and active compounds have been demonstrated to be effective in the treatment of GC, mainly involving the regulation of proliferation, apoptosis, and inflammation (Tables 2 and 3, Figure 1).

Regulating proliferation and apoptosis related to GC

The imbalance between cell proliferation and apoptosis destroys tissue homeostasis and promotes tumor occurrence[70]. Therefore, regulating the proliferation and apoptosis of GC cells is an important therapeutic strategy for preventing GC progression[71]. In GC, the PI3K/AKT/mTOR pathway is often activated, and this pathway plays a role in promoting cancer progression[72]. Multiple targets of this pathway have been shown to be mutated or otherwise dysregulated during tumorigenesis[73]. Naringin and pectinarigenin (PEC) can inhibit the PI3K/Akt signaling pathway, and PEC can also inhibit downstream mTOR[74,75]. Weifufang promoted the upregulation of PTEN and inhibited the PI3K/Akt signaling pathway[76]. Aloin (ALO) inhibits the Akt/mTOR signaling pathway mediated by NOX2-ROS[77]. They can both play a role in inhibiting cell formation. Recent studies have shown that the STAT signaling pathway has a strong carcinogenic potential, which can promote proliferation and has an extremely significant anti-apoptotic effect[78,79]. Therefore, dysregulation of the STAT3 signaling pathway is common in GC[80]. Ponicidin can induce apoptosis in MKN28 cells, which may be related to the inhibition of the VEGFR2-mediated JAK2-STAT3 signaling pathway[81]. The study showed that micheliolide inhibited the growth of GC in vitro and in vivo, and this effect was related to downregulation expression of IL-6 and thus inhibition of the STAT3 pathway[82]. ALO can inhibit cell proliferation by inhibiting the NOX2-ROS mediated Stat3 signal pathway[77].

Anti-Inflammation related signaling pathways and targets of GC

The occurrence of GC is mostly the result of inflammation, and blocking the inflammatory signaling pathway is essential for the treatment of GC[83]. During GC, continuous activation of NF-κB leads to chronic inflammation and further tumorigenesis. ART and its derivatives can be used to treat GC caused by H. pylori infection by downregulating inflammatory factors and inhibiting the NF-κB signaling pathway in vivo. The STAT3 signaling pathway plays an important role in the development of inflammation-related GC, and its activation can induce tumors to promote inflammation[84,85]. RA can downregulate the anti-inflammatory factor IL-10 and upregulate pro-inflammatory cytokines such as TNF-α and IL-1β Expression of. Inhibition of IL-6/STAT3 pathway[54].

Inhibition of angiogenesis signaling pathways and targets of GC

Without angiogenesis, it is difficult to achieve large-scale proliferation and invasion of GC cells[86]. Angiogenesis in GC is regulated by a variety of angiogenic or anti-angiogenic factors[87]. For example, VEGF is the most representative promoter of angiogenesis. Currently, it is considered one of the most promising targets for the treatment of GC[88]. Therefore, Weining granules inhibit angiogenesis by downregulating VEGF expression[89]. As an upstream regulator of VEGF, HIF-1α also plays a role in regulating other pro angiogenic factors and anti-angiogenic factors[90,91]. Therefore, the inhibition of HIF-1α and VEGF expression may be the direct reason for GRg3’s excellent inhibition of angiogenesis[92].

OTHER MECHANISMS OF ACTION IN THE TREATMENT OF GC
Regulate GC related metabolism

Cancer is usually considered a metabolic disease because cancer cells proliferate rapidly by reprogramming their energy metabolism. Glycolysis is the main mechanism by which GC cells obtain energy[93,94]. Current research has shown that many TCMs can inhibit abnormal metabolic processes. Licochalcone A (Lic A) is an important active compound extracted from licorice that has anti-inflammatory, antibacterial, antioxidant, antitumor, and other activities. Wu et al[95] found that Lic A inhibits glycolysis by blocking the Akt/HK2 pathway. In nature, baicalein mainly exists in Scutellaria baicalensis Georgi and has anti-inflammatory, antibacterial, and other effects. Chen et al[96] found that baicalein can inhibit glycolysis by regulating the PTEN/Akt/HIF-1α signaling pathway.

Reverse GC related EMT

In the malignant progression of GC, tumor cells use the process of EMT to change their cell morphology to improve their invasiveness, metastatic ability, and drug resistance[97,98]. Therefore, the inhibition of EMT is a key factor in the treatment of GC. Wang et al[99] found that Poria acid can inhibit the EMT process by significantly increasing the expression of E-cadherin and inhibiting the expression of N-cadherin and Vimentin, thereby inhibiting the invasion and metastasis of GC cells. Babaodan (BBD) is a TCM compound that has been used in clinical treatment since the Ming Dynasty, (more than 400 years ago). Modern research has found that Babaodan has significant anti-tumor, anti-inflammatory, immune regulatory effects, as well as other effects. Liu et al[100] found that BBD can inhibit the TGF-β/Smad signaling pathway, thereby inhibiting TGF-β-induced EMT.

Improved GC related immune regulation

Compared with other therapies, immunotherapy has the characteristics of lasting remission, improving the quality of life of patients, and prolonging survival[101], which brings new hope to most patients with GC[102]. Modern experimental studies have found that many TCMs regulate immunity and eliminate immune disorders[103]. Oleanolic acid is widely found in many TCMs, such as hawthorns and black plums. Lu et al[104] found that OA destroyed IL-1 in GC cells β/NF-κB/TET3 axis, leading to DNA hypomethylation and downregulation of PD-L1. This suggests that OA can be used as an epigenetic modulator in GC immunotherapy. In addition, sophoridine, a monomer of TCM, regulates immune function and can act on macrophages and CD8+ T cells, thus reshaping the immune microenvironment of GC[105].

Suppress GC related intrusion and migration

The invasion and migration of cancer cells play an important role in tumor metastasis, and distant metastasis of GC is a direct cause of high mortality[106,107]. A variety of Chinese herbal monomers and compounds have been used, including crocin[108], betulinic acid[109], ALO[77], 18 β-glycyrrhetinic acid[110], baicalein[111], and YangZheng Sanjie decoction[112].

Kill Helicobacter pylori

As early as 1994, H. pylori was identified as a carcinogen in GC[113]. Currently, it is the first type of carcinogen to be identified in GC. Reducing H. pylori infections is an important means of preventing and treating GC[114]. The TCM monomers piperine[115], ART[53] and SC[55] have been proven to have corresponding therapeutic potentials.

CONCLUSION

As early as 40 years ago, GC was recognized as the end result of further development of GPL[116]. Recently, knowledge of the molecular basis of GC and GPL has been accumulating rapidly[117]. However, the molecular mechanism of the transformation from GPL to GC remains unclear[118]. In this study, we reviewed the progress of TCM in treating GPL and GC, while aiming to investigate the potential therapeutic treatment of TCM on the transformation from GPL to GC.

In this review (Tables 1-3, Figure 1), we found that multiple mechanisms of TCM can be identified in the treatment of both GPL and GC. The abnormal activation of the PI3K/ATK, NF-κB, IL-6/STAT3, and HIF-1α/VEGF signaling pathways in both GPL and GC indicated that some pathological changes in GC occurred as early as in the GPL stage. Therefore, in the treatment of GC, secondary prevention should be moved to the GPL stage[119]. According to these studies, active components of TCM, such as Epigallocatechin Gallate, GRg3, AT-III and AS-IV, showed multiple therapeutic effects on both GPL and GC via different targets and signaling pathways. This suggests that these active ingredients may have the therapeutic potential to block the transition from GPL to GC through these targets and signaling pathways. For example, GRg3 has a significant anti-angiogenic effect in both the GPL and GC processes. In the GPL stage, GRg3 can inhibit angiogenesis by downregulating GLUT1 and GLUT4[120], and suppressing the PI3K/Akt/mTOR pathway and downstream HIF-1α[63]. In GC, GRg3 can also reduce HIF-1α, thereby reducing tumor angiogenesis[121]. This has revealed that in the process of progression from GPL to GC, the pro angiogenic effect of HIF-1α may be a theme throughout the two pathological stages. GLUT1, GLUT4, and other proteins may be potential targets for the progression of GPL to GC. In a broader perspective, the existence of the same TCM compound with obvious therapeutic effect both on GPL and GC indicate that “dual effects” in treating GC and its precancerous lesions: when TCM is used to treat GPL, it also eliminates the possibility of GC as a malignant progression.

Many cancers, including GCs, are preceded by precancers. Treating precancers to prevent GC is essential for reducing GC-associated morbidity and mortality. Effective cancer prevention is the best way to stop cancer, and TCM have been shown to be effective in preventing cancer[122]. GRb1, Notoginsenoside R1, AS-IV, GRg3, AT-III, Calycosin, and other active ingredients have shown a variety of therapeutic effects in the treatment of precancerous lesions, including anti-proliferation and apoptosis induction, anti-angiogenesis, inhibition of glycolysis, and anti-inflammatory activities, including PI3K/Akt, Wnt/β-catenin, NF-κB, and STAT3 signaling. Clinically, Chinese herbal medicines containing these active ingredients are often used to treat precancerous lesions, such as ginseng, Panax notoginseng, Atractylodes, Astragalus membranaceus, and Pseudostellariae radix. These TCMs are usually combined to form a TCM compound for the clinical treatment of precancerous lesions, such as WPX, Sancao Tiaowei decoction, and Guiqi Baizhu prescriptions. Interestingly, the mechanisms of action of these active ingredients and TCM prescriptions in the treatment of precancerous lesions are not the same, which suggests that the curative effects of TCM are not caused by single chemical entities but result from their multi-ingredient prescription[123]. Chinese medicine differs from Western medicine in that many compounds in Chinese medicine act on multiple targets simultaneously, producing significant therapeutic effects[124]. For example, WPX can regulate proliferation and apoptosis by regulating the Wnt/β-catenin and Wnt/GSK3β pathways, playing an anti-angiogenic role by inhibiting the angiogenic factors HIF-1α, VEGF, and ERK1/CylinD1 pathway, and inhibiting glycolysis by regulating the miRNA-34a/PI3K/AkT/mTOR pathway. Interestingly, the Chinese herbal monomers contained in this formula, such as GRb1, AS-IV, AT-III, and Calycosin, can also regulate proliferation, apoptosis, angiogenesis, and glycolysis, and the targets of these monomers from WPX are not exactly same as those of WPX. In this comparison, TCM compounds change the mechanism of action of a single compound through the combination of a variety of TCMs and lead the creation of a new mechanism of action. This feature is precisely an advantage of TCM in treating GPL, as these medicines block its progression to GC, and fill the gap of Western medicine in treating GPL.

Clinical trials are one of the most reliable sources of evidence that guide medical practice. Current western medicine therapy for GPL generally includes the eradication of H. pylori, vitamin supplements, and other treatments[10]. However, for patients with advanced GPL, such as the IM stage, whether eradication of H. pylori have therapeutic effects remain controversial[125]. Compared with Western medicine, TCM has a curative effect at all stages of GPL. Currently, clinical trials have confirmed that TCM can block the progression of GPL to GC[126,127]. Taking WFC as an example, compared with vitacoenzyme (Vit), the total effective rates of the WFC and Vit groups in alleviating the degree of atrophy were 80.00% and 23.33%, respectively. The total effective rates of relieving IM in the WFC and Vit groups were 73.33% and 26.67%, respectively[16]. Notably, primary outcome measures, such as overall survival and 5-year survival rates, were employed in majority of these trials. These “head-to-head” trials demonstrated the efficacy of TCM in preventing the transformation of GPL to GC. Nevertheless, compared to the various mechanisms of TCM against GPL and GC reported by experiments, the development of relevant clinical trials is still insufficient. In the future, more attention should be paid to the development of clinical trials of GPL and GC with TCM.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: China

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): 0

Grade C (Good): C, C, C

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Cheng TH, Taiwan; Zhang GL, China S-Editor: Chen YL L-Editor: A P-Editor: Chen YL

References
1.  Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209-249.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 50630]  [Cited by in F6Publishing: 56456]  [Article Influence: 14114.0]  [Reference Citation Analysis (168)]
2.  Zhang C, Chen Z, Zhou X, Xu W, Wang G, Tang X, Luo L, Tu J, Zhu Y, Hu W, Xu X, Pan W. Cantharidin induces G(2)/M phase arrest and apoptosis in human gastric cancer SGC-7901 and BGC-823 cells. Oncol Lett. 2014;8:2721-2726.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 29]  [Article Influence: 2.6]  [Reference Citation Analysis (0)]
3.  Shin VY, Ng EK, Chan VW, Kwong A, Chu KM. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol Cancer. 2015;14:202.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 65]  [Cited by in F6Publishing: 85]  [Article Influence: 8.5]  [Reference Citation Analysis (0)]
4.  Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860-867.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10123]  [Cited by in F6Publishing: 10964]  [Article Influence: 476.7]  [Reference Citation Analysis (2)]
5.  Correa P. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735-6740.  [PubMed]  [DOI]  [Cited in This Article: ]
6.  You WC, Li JY, Blot WJ, Chang YS, Jin ML, Gail MH, Zhang L, Liu WD, Ma JL, Hu YR, Mark SD, Correa P, Fraumeni JF Jr, Xu GW. Evolution of precancerous lesions in a rural Chinese population at high risk of gastric cancer. Int J Cancer. 1999;83:615-619.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 2]  [Reference Citation Analysis (0)]
7.  Kim YI, Park JY, Kim BJ, Hwang HW, Hong SA, Kim JG. Risk of metachronous gastric neoplasm occurrence during intermediate-term follow-up period after endoscopic submucosal dissection for gastric dysplasia. Sci Rep. 2020;10:6747.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
8.  Lin Z, Luo M, Chen X, He X, Qian Y, Lai S, Si J, Chen S. Combined Detection of Plasma ZIC1, HOXD10 and RUNX3 Methylation is a Promising Strategy for Early Detection of Gastric Cancer and Precancerous Lesions. J Cancer. 2017;8:1038-1044.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 26]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
9.  Zhao S, Zhang X, Wang J, Ge J, Liu J. Endoscopic resection versus surgery for early gastric cancer and precancerous lesions: a meta-analysis. Springerplus. 2016;5:678.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 2]  [Article Influence: 0.2]  [Reference Citation Analysis (0)]
10.  Pimentel-Nunes P, Libânio D, Marcos-Pinto R, Areia M, Leja M, Esposito G, Garrido M, Kikuste I, Megraud F, Matysiak-Budnik T, Annibale B, Dumonceau JM, Barros R, Fléjou JF, Carneiro F, van Hooft JE, Kuipers EJ, Dinis-Ribeiro M. Management of epithelial precancerous conditions and lesions in the stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) guideline update 2019. Endoscopy. 2019;51:365-388.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 432]  [Cited by in F6Publishing: 555]  [Article Influence: 92.5]  [Reference Citation Analysis (0)]
11.  Dawsey SP, Hollenbeck A, Schatzkin A, Abnet CC. A prospective study of vitamin and mineral supplement use and the risk of upper gastrointestinal cancers. PLoS One. 2014;9:e88774.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 22]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
12.  Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539-545.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5245]  [Cited by in F6Publishing: 5606]  [Article Influence: 233.6]  [Reference Citation Analysis (0)]
13.  Zheng J, Cai W, Lu X, He W, Li D, Zhong H, Yang L, Li S, Li H, Rafee S, Zhao Z, Wang Q, Pan H. Chronic stress accelerates the process of gastric precancerous lesions in rats. J Cancer. 2021;12:4121-4133.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
14.  Scotiniotis IA, Rokkas T, Furth EE, Rigas B, Shiff SJ. Altered gastric epithelial cell kinetics in Helicobacter pylori-associated intestinal metaplasia: implications for gastric carcinogenesis. Int J Cancer. 2000;85:192-200.  [PubMed]  [DOI]  [Cited in This Article: ]
15.  Bockerstett KA, DiPaolo RJ. Regulation of Gastric Carcinogenesis by Inflammatory Cytokines. Cell Mol Gastroenterol Hepatol. 2017;4:47-53.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 66]  [Cited by in F6Publishing: 84]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
16.  Bian Y, Chen X, Cao H, Xie D, Zhu M, Yuan N, Lu L, Lu B, Wu C, Bahaji Azami NL, Wang Z, Wang H, Zhang Y, Li K, Ye G, Sun M. A correlational study of Weifuchun and its clinical effect on intestinal flora in precancerous lesions of gastric cancer. Chin Med. 2021;16:120.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 9]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
17.  Subotički T, Mitrović Ajtić O, Živković E, Diklić M, Đikić D, Tošić M, Beleslin-Čokić B, Dragojević T, Gotić M, Santibanez JF, Čokić V. VEGF Regulation of Angiogenic Factors via Inflammatory Signaling in Myeloproliferative Neoplasms. Int J Mol Sci. 2021;22.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 3]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
18.  Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD. The codependence of angiogenesis and chronic inflammation. FASEB J. 1997;11:457-465.  [PubMed]  [DOI]  [Cited in This Article: ]
19.  Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31:37-49.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 436]  [Cited by in F6Publishing: 478]  [Article Influence: 29.9]  [Reference Citation Analysis (0)]
20.  Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436-444.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6912]  [Cited by in F6Publishing: 8045]  [Article Influence: 473.2]  [Reference Citation Analysis (0)]
21.  Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15-18.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1845]  [Cited by in F6Publishing: 1911]  [Article Influence: 83.1]  [Reference Citation Analysis (0)]
22.  Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298-307.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3471]  [Cited by in F6Publishing: 3852]  [Article Influence: 275.1]  [Reference Citation Analysis (0)]
23.  Cao Y. Tumor angiogenesis and molecular targets for therapy. Front Biosci (Landmark Ed). 2009;14:3962-3973.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 59]  [Cited by in F6Publishing: 60]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
24.  Jiang X, Wang J, Deng X, Xiong F, Zhang S, Gong Z, Li X, Cao K, Deng H, He Y, Liao Q, Xiang B, Zhou M, Guo C, Zeng Z, Li G, Xiong W. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:204.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 111]  [Cited by in F6Publishing: 354]  [Article Influence: 70.8]  [Reference Citation Analysis (0)]
25.  Zhong WR, Huang YX, Cui JP. [Clinical study on modified sijunzi decoction in treating intestinal metaplasia of gastric mucosa]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1997;17:462-464.  [PubMed]  [DOI]  [Cited in This Article: ]
26.  Gan D, Xu A, Du H, Ye Y. Chinese Classical Formula Sijunzi Decoction and Chronic Atrophic Gastritis: Evidence for Treatment Approach? Evid Based Complement Alternat Med. 2017;2017:9012929.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 18]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
27.  Li YJ, Liao LL, Liu P, Tang P, Wang H, Peng QH. Sijunzi Decoction Inhibits Stemness by Suppressing β-Catenin Transcriptional Activity in Gastric Cancer Cells. Chin J Integr Med. 2022;28:702-710.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 3]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
28.  Qian J, Li J, Jia J, Jin X, Yu D, Guo C, Xie B, Qian L. DIFFERENT CONCENTRATIONS OF SIJUNZI DECOCTION INHIBIT PROLIFERATION AND INDUCE APOPTOSIS OF HUMAN GASTRIC CANCER SGC-7901 SIDE POPULATION. Afr J Tradit Complement Altern Med. 2016;13:145-156.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 7]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
29.  Yin J, Yi J, Yang C, Xu B, Lin J, Hu H, Wu X, Shi H, Fei X. Weiqi Decoction Attenuated Chronic Atrophic Gastritis with Precancerous Lesion through Regulating Microcirculation Disturbance and HIF-1α Signaling Pathway. Evid Based Complement Alternat Med. 2019;2019:2651037.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
30.  Hao X, Liu Y, Zhou P, Jiang Q, Yang Z, Xu M, Liu S, Zhang S, Wang Y. Integrating Network Pharmacology and Experimental Validation to Investigate the Mechanisms of Huazhuojiedu Decoction to Treat Chronic Atrophic Gastritis. Evid Based Complement Alternat Med. 2020;2020:2638362.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 11]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
31.  Zeng JH, Pan HF, Liu YZ, Xu HB, Zhao ZM, Li HW, Ren JL, Chen LH, Hu X, Yan Y. Effects of Weipixiao on Wnt pathway-associated proteins in gastric mucosal epithelial cells from rats with gastric precancerous lesions. Chin J Integr Med. 2016;22:267-275.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 10]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
32.  Wang H, Wu R, Xie D, Ding L, Lv X, Bian Y, Chen X, Nisma Lena BA, Wang S, Li K, Chen W, Ye G, Sun M. A Combined Phytochemistry and Network Pharmacology Approach to Reveal the Effective Substances and Mechanisms of Wei-Fu-Chun Tablet in the Treatment of Precancerous Lesions of Gastric Cancer. Front Pharmacol. 2020;11:558471.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]
33.  Zeng J, Ma X, Zhao Z, Chen Y, Wang J, Hao Y, Yu J, Zeng Z, Chen N, Zhao M, Tang J, Gong D. Ginsenoside Rb1 Lessens Gastric Precancerous Lesions by Interfering With β-Catenin/TCF4 Interaction. Front Pharmacol. 2021;12:682713.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 3]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
34.  Brenes F, Ruiz B, Correa P, Hunter F, Rhamakrishnan T, Fontham E, Shi TY. Helicobacter pylori causes hyperproliferation of the gastric epithelium: pre- and post-eradication indices of proliferating cell nuclear antigen. Am J Gastroenterol. 1993;88:1870-1875.  [PubMed]  [DOI]  [Cited in This Article: ]
35.  Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, de Velasco G, Jeong KJ, Akbani R, Hadjipanayis A, Pantazi A, Bristow CA, Lee E, Mahadeshwar HS, Tang J, Zhang J, Yang L, Seth S, Lee S, Ren X, Song X, Sun H, Seidman J, Luquette LJ, Xi R, Chin L, Protopopov A, Westbrook TF, Shelley CS, Choueiri TK, Ittmann M, Van Waes C, Weinstein JN, Liang H, Henske EP, Godwin AK, Park PJ, Kucherlapati R, Scott KL, Mills GB, Kwiatkowski DJ, Creighton CJ. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell. 2017;31:820-832.e3.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 335]  [Cited by in F6Publishing: 417]  [Article Influence: 52.1]  [Reference Citation Analysis (0)]
36.  Bonizzi A, Truffi M, Sevieri M, Allevi R, Sitia L, Ottria R, Sorrentino L, Sottani C, Negri S, Grignani E, Mazzucchelli S, Corsi F. Everolimus Nanoformulation in Biological Nanoparticles Increases Drug Responsiveness in Resistant and Low-Responsive Breast Cancer Cell Lines. Pharmaceutics. 2019;11.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 12]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
37.  Wang Y, Chu F, Lin J, Li Y, Johnson N, Zhang J, Gai C, Su Z, Cheng H, Wang L, Ding X. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification. J Ethnopharmacol. 2021;279:114399.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 36]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
38.  Zhu F, Xu Y, Pan J, Li M, Chen F, Xie G. Epigallocatechin Gallate Protects against MNNG-Induced Precancerous Lesions of Gastric Carcinoma in Rats via PI3K/Akt/mTOR Pathway. Evid Based Complement Alternat Med. 2021;2021:8846813.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
39.  Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. Wnt/β-Catenin Signaling as a Molecular Target by Pathogenic Bacteria. Front Immunol. 2019;10:2135.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 46]  [Cited by in F6Publishing: 79]  [Article Influence: 13.2]  [Reference Citation Analysis (0)]
40.  Seckin Y, Arici S, Harputluoglu M, Yonem O, Yilmaz A, Ozer H, Karincaoglu M, Demirel U. Expression of claudin-4 and beta-catenin in gastric premalignant lesions. Acta Gastroenterol Belg. 2009;72:407-412.  [PubMed]  [DOI]  [Cited in This Article: ]
41.  Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837-1851.  [PubMed]  [DOI]  [Cited in This Article: ]
42.  Chen Y, Henson ES, Xiao W, Huang D, McMillan-Ward EM, Israels SJ, Gibson SB. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia. Autophagy. 2016;12:1029-1046.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 63]  [Cited by in F6Publishing: 76]  [Article Influence: 8.4]  [Reference Citation Analysis (0)]
43.  Zhao E, Feng L, Bai L, Cui H. NUCKS promotes cell proliferation and suppresses autophagy through the mTOR-Beclin1 pathway in gastric cancer. J Exp Clin Cancer Res. 2020;39:194.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 20]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
44.  Cai T, Zhang C, Zhao Z, Li S, Cai H, Chen X, Cai D, Liu W, Yan Y, Xie K, Pan H, Zeng X. The gastric mucosal protective effects of astragaloside IV in mnng-induced GPL rats. Biomed Pharmacother. 2018;104:291-299.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 24]  [Cited by in F6Publishing: 27]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
45.  Zhao B, Wang Y, Tan X, Ke K, Zheng X, Wang F, Lan S, Liao N, Cai Z, Shi Y, Zheng Y, Lai Y, Wang L, Li Q, Liu J, Huang A, Liu X. Inflammatory Micro-environment Contributes to Stemness Properties and Metastatic Potential of HCC via the NF-κB/miR-497/SALL4 Axis. Mol Ther Oncolytics. 2019;15:79-90.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 19]  [Article Influence: 3.2]  [Reference Citation Analysis (0)]
46.  Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 2013;4:176-185.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 338]  [Cited by in F6Publishing: 507]  [Article Influence: 42.3]  [Reference Citation Analysis (0)]
47.  Moser B, Hochreiter B, Basílio J, Gleitsmann V, Panhuber A, Pardo-Garcia A, Hoesel B, Salzmann M, Resch U, Noreen M, Schmid JA. The inflammatory kinase IKKα phosphorylates and stabilizes c-Myc and enhances its activity. Mol Cancer. 2021;20:16.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 19]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
48.  Zheng C, Yin Q, Wu H. Structural studies of NF-κB signaling. Cell Res. 2011;21:183-195.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 101]  [Cited by in F6Publishing: 90]  [Article Influence: 6.4]  [Reference Citation Analysis (0)]
49.  DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev. 2012;246:379-400.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1044]  [Cited by in F6Publishing: 1191]  [Article Influence: 91.6]  [Reference Citation Analysis (0)]
50.  Liu K, Zhao F, Yan J, Xia Z, Jiang D, Ma P. Hispidulin: A promising flavonoid with diverse anti-cancer properties. Life Sci. 2020;259:118395.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 30]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
51.  Agharahimi M, Badisa RB, Mazzio E, Soliman KF, Goodman CB. Cocaine potentiates an inflammatory response in C6 astroglia-like cells. Biomed Rep. 2021;14:45.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
52.  Yang H, Zhao H, Dong X, Yang Z, Chang W. Tomentosin induces apoptotic pathway by blocking inflammatory mediators via modulation of cell proteins in AGS gastric cancer cell line. J Biochem Mol Toxicol. 2020;34:e22501.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 14]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
53.  Su T, Li F, Guan J, Liu L, Huang P, Wang Y, Qi X, Liu Z, Lu L, Wang D. Artemisinin and its derivatives prevent Helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling. Phytomedicine. 2019;63:152968.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 20]  [Cited by in F6Publishing: 20]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
54.  Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther. 2015;9:2695-2703.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 46]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
55.  Sun J, Meng M. Chemoprotective Effect of Scutellarin against Gastric Cancer in Rats: An in vitro and in vivo Study. J Oleo Sci. 2022;71:1003-1012.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
56.  Weidemann A, Johnson RS. Biology of HIF-1alpha. Cell Death Differ. 2008;15:621-627.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 561]  [Cited by in F6Publishing: 684]  [Article Influence: 40.2]  [Reference Citation Analysis (0)]
57.  Zimna A, Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. Biomed Res Int. 2015;2015:549412.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 249]  [Cited by in F6Publishing: 380]  [Article Influence: 38.0]  [Reference Citation Analysis (0)]
58.  Gao Y, Wang J, Zhao M, Xia T, Liu Q, Chen N, Liao W, Zeng Z, You F, Zeng J. Atractylenolide III Attenuates Angiogenesis in Gastric Precancerous Lesions Through the Downregulation of Delta-Like Ligand 4. Front Pharmacol. 2022;13:797805.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 6]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
59.  Zeng J, Yan R, Pan H, You F, Cai T, Liu W, Zheng C, Zhao Z, Gong D, Chen L, Zhang Y. Weipixiao attenuate early angiogenesis in rats with gastric precancerous lesions. BMC Complement Altern Med. 2018;18:250.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 20]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
60.  Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell. 2008;13:472-482.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1553]  [Cited by in F6Publishing: 1654]  [Article Influence: 97.3]  [Reference Citation Analysis (0)]
61.  Flaveny CA, Griffett K, El-Gendy Bel-D, Kazantzis M, Sengupta M, Amelio AL, Chatterjee A, Walker J, Solt LA, Kamenecka TM, Burris TP. Broad Anti-tumor Activity of a Small Molecule that Selectively Targets the Warburg Effect and Lipogenesis. Cancer Cell. 2015;28:42-56.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 133]  [Cited by in F6Publishing: 150]  [Article Influence: 15.0]  [Reference Citation Analysis (0)]
62.  Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69:4918-4925.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 687]  [Cited by in F6Publishing: 717]  [Article Influence: 44.8]  [Reference Citation Analysis (1)]
63.  Liu W, Pan HF, Yang LJ, Zhao ZM, Yuan DS, Liu YL, Lin LZ. Panax ginseng C.A. Meyer (Rg3) Ameliorates Gastric Precancerous Lesions in Atp4a(-/-) Mice via Inhibition of Glycolysis through PI3K/AKT/miRNA-21 Pathway. Evid Based Complement Alternat Med. 2020;2020:2672648.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 17]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
64.  Cai T, Zhang C, Zeng X, Zhao Z, Yan Y, Yu X, Wu L, Lin L, Pan H. Protective effects of Weipixiao decoction against MNNG-induced gastric precancerous lesions in rats. Biomed Pharmacother. 2019;120:109427.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 13]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
65.  Zhang C, Cai T, Zeng X, Cai D, Chen Y, Huang X, Gan H, Zhuo J, Zhao Z, Pan H, Li S. Astragaloside IV reverses MNNG-induced precancerous lesions of gastric carcinoma in rats: Regulation on glycolysis through miRNA-34a/LDHA pathway. Phytother Res. 2018;32:1364-1372.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 23]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
66.  Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69-84.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1356]  [Cited by in F6Publishing: 2275]  [Article Influence: 379.2]  [Reference Citation Analysis (0)]
67.  Roussos ET, Keckesova Z, Haley JD, Epstein DM, Weinberg RA, Condeelis JS. AACR special conference on epithelial-mesenchymal transition and cancer progression and treatment. Cancer Res. 2010;70:7360-7364.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 62]  [Cited by in F6Publishing: 70]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
68.  Liao W, Wen Y, Wang J, Zhao M, Lv S, Chen N, Li Y, Wan L, Zheng Q, Mou Y, Zhao Z, Tang J, Zeng J. Gallic acid alleviates gastric precancerous lesions through inhibition of epithelial mesenchymal transition via Wnt/β-catenin signaling pathway. J Ethnopharmacol. 2023;302:115885.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 8]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]
69.  Li Y, Li T, Chen J, Zheng H, Li Y, Chu F, Wang S, Li P, Lin J, Su Z, Ding X. Manpixiao Decoction Halted the Malignant Transformation of Precancerous Lesions of Gastric Cancer: From Network Prediction to In-Vivo Verification. Front Pharmacol. 2022;13:927731.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 5]  [Reference Citation Analysis (0)]
70.  Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486-541.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3672]  [Cited by in F6Publishing: 4091]  [Article Influence: 584.4]  [Reference Citation Analysis (0)]
71.  Tao W, Li Y, Zhu M, Li C, Li P. LncRNA NORAD Promotes Proliferation And Inhibits Apoptosis Of Gastric Cancer By Regulating miR-214/Akt/mTOR Axis. Onco Targets Ther. 2019;12:8841-8851.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 40]  [Article Influence: 6.7]  [Reference Citation Analysis (0)]
72.  Ohtsu A, Ajani JA, Bai YX, Bang YJ, Chung HC, Pan HM, Sahmoud T, Shen L, Yeh KH, Chin K, Muro K, Kim YH, Ferry D, Tebbutt NC, Al-Batran SE, Smith H, Costantini C, Rizvi S, Lebwohl D, Van Cutsem E. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol. 2013;31:3935-3943.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 332]  [Cited by in F6Publishing: 361]  [Article Influence: 30.1]  [Reference Citation Analysis (0)]
73.  Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, Huang X, Monian P, Jiang X, de Stanchina E, Baselga J, Liu N, Chandarlapaty S, Rosen N. Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov. 2014;4:334-347.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 155]  [Cited by in F6Publishing: 159]  [Article Influence: 14.5]  [Reference Citation Analysis (0)]
74.  Xu C, Huang X, Huang Y, Liu X, Wu M, Wang J, Duan X. Naringin induces apoptosis of gastric carcinoma cells via blocking the PI3K/AKT pathway and activating prodeath autophagy. Mol Med Rep. 2021;24.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 15]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
75.  Lee HJ, Venkatarame Gowda Saralamma V, Kim SM, Ha SE, Raha S, Lee WS, Kim EH, Lee SJ, Heo JD, Kim GS. Pectolinarigenin Induced Cell Cycle Arrest, Autophagy, and Apoptosis in Gastric Cancer Cell via PI3K/AKT/mTOR Signaling Pathway. Nutrients. 2018;10.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 89]  [Article Influence: 12.7]  [Reference Citation Analysis (0)]
76.  He JQ, Zhang SR, Li DF, Tang JY, Wang YQ, He X, Li YM, Wu H, Zhou M, Jiao J, Xiao PL. Experimental Study on the Effect of a Weifufang on Human Gastric Adenocarcinoma Cell Line BGC-823 Xenografts and PTEN Gene Expression in Nude Mice. Cancer Biother Radiopharm. 2020;35:199-207.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
77.  Wang Z, Tang T, Wang S, Cai T, Tao H, Zhang Q, Qi S, Qi Z. Aloin Inhibits the Proliferation and Migration of Gastric Cancer Cells by Regulating NOX2-ROS-Mediated Pro-Survival Signal Pathways. Drug Des Devel Ther. 2020;14:145-155.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 30]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
78.  Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr. Stat3 as an oncogene. Cell. 1999;98:295-303.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2236]  [Cited by in F6Publishing: 2326]  [Article Influence: 89.5]  [Reference Citation Analysis (0)]
79.  Hackermüller J, Reiche K, Otto C, Hösler N, Blumert C, Brocke-Heidrich K, Böhlig L, Nitsche A, Kasack K, Ahnert P, Krupp W, Engeland K, Stadler PF, Horn F. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs. Genome Biol. 2014;15:R48.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 33]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
80.  Piao JY, Kim SJ, Kim DH, Park JH, Park SA, Han HJ, Na HK, Yoon K, Lee HN, Kim N, Hahm KB, Surh YJ. Helicobacter pylori infection induces STAT3 phosphorylation on Ser727 and autophagy in human gastric epithelial cells and mouse stomach. Sci Rep. 2020;10:15711.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 11]  [Cited by in F6Publishing: 19]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
81.  Liu YF, Lu YM, Qu GQ, Liu Y, Chen WX, Liao XH, Kong WM. Ponicidin induces apoptosis via JAK2 and STAT3 signaling pathways in gastric carcinoma. Int J Mol Sci. 2015;16:1576-1589.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 15]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
82.  Tang X, Ding Q, Chen C, Chen F, Zhou X, Hong CJ, Pan W. Micheliolide inhibits gastric cancer growth in vitro and in vivo via blockade of the IL-6/STAT3 pathway. Pharmazie. 2019;74:175-178.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 9]  [Reference Citation Analysis (0)]
83.  Crone SG, Jacobsen A, Federspiel B, Bardram L, Krogh A, Lund AH, Friis-Hansen L. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer. 2012;11:71.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 82]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
84.  Ernst M, Najdovska M, Grail D, Lundgren-May T, Buchert M, Tye H, Matthews VB, Armes J, Bhathal PS, Hughes NR, Marcusson EG, Karras JG, Na S, Sedgwick JD, Hertzog PJ, Jenkins BJ. STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J Clin Invest. 2008;118:1727-1738.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39]  [Cited by in F6Publishing: 167]  [Article Influence: 9.8]  [Reference Citation Analysis (0)]
85.  Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798-809.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2935]  [Cited by in F6Publishing: 3272]  [Article Influence: 204.5]  [Reference Citation Analysis (0)]
86.  Tang S, Wang D, Zhang Q, Li L. miR-218 suppresses gastric cancer cell proliferation and invasion via regulation of angiopoietin-2. Exp Ther Med. 2016;12:3837-3842.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 18]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
87.  Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, Wang Y, Shen J, Zhang Y, He Q, Dong J, Yang Z. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats. Sci Rep. 2017;7:45580.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 31]  [Cited by in F6Publishing: 38]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
88.  Yang J, Wang Q, Qiao C, Lin Z, Li X, Huang Y, Zhou T, Li Y, Shen B, Lv M, Feng J. Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60. Cell Mol Immunol. 2014;11:285-293.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 19]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
89.  Li B, Qu G. Inhibition of the hypoxia-induced factor-1α and vascular endothelial growth factor expression through ginsenoside Rg3 in human gastric cancer cells. J Cancer Res Ther. 2019;15:1642-1646.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 17]  [Article Influence: 3.4]  [Reference Citation Analysis (0)]
90.  Palazon A, Tyrakis PA, Macias D, Veliça P, Rundqvist H, Fitzpatrick S, Vojnovic N, Phan AT, Loman N, Hedenfalk I, Hatschek T, Lövrot J, Foukakis T, Goldrath AW, Bergh J, Johnson RS. An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell. 2017;32:669-683.e5.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 266]  [Cited by in F6Publishing: 358]  [Article Influence: 44.8]  [Reference Citation Analysis (0)]
91.  Zhang Y, Coleman M, Brekken RA. Perspectives on Hypoxia Signaling in Tumor Stroma. Cancers (Basel). 2021;13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 18]  [Article Influence: 4.5]  [Reference Citation Analysis (0)]
92.  Deng X, Liang X, Zhou X, Jiang M, Zhao X, Fu L, Liang M, Wang X, Liang J. Protective effect and mechanisms of Weining granule on N-methyl-N'-nitro-N- nitrosoguanidine-induced gastric cancer in rats. J Tradit Chin Med. 2019;39:393-401.  [PubMed]  [DOI]  [Cited in This Article: ]
93.  Ohshima K, Morii E. Metabolic Reprogramming of Cancer Cells during Tumor Progression and Metastasis. Metabolites. 2021;11.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 34]  [Cited by in F6Publishing: 94]  [Article Influence: 23.5]  [Reference Citation Analysis (0)]
94.  Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325-337.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2023]  [Cited by in F6Publishing: 2321]  [Article Influence: 165.8]  [Reference Citation Analysis (0)]
95.  Wu J, Zhang X, Wang Y, Sun Q, Chen M, Liu S, Zou X. Licochalcone A suppresses hexokinase 2-mediated tumor glycolysis in gastric cancer via downregulation of the Akt signaling pathway. Oncol Rep. 2018;39:1181-1190.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 19]  [Cited by in F6Publishing: 33]  [Article Influence: 4.1]  [Reference Citation Analysis (0)]
96.  Chen F, Zhuang M, Zhong C, Peng J, Wang X, Li J, Chen Z, Huang Y. Baicalein reverses hypoxia-induced 5-FU resistance in gastric cancer AGS cells through suppression of glycolysis and the PTEN/Akt/HIF-1α signaling pathway. Oncol Rep. 2015;33:457-463.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 54]  [Cited by in F6Publishing: 65]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
97.  Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346-354.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1600]  [Cited by in F6Publishing: 1828]  [Article Influence: 152.3]  [Reference Citation Analysis (0)]
98.  Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019;29:212-226.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 920]  [Cited by in F6Publishing: 1725]  [Article Influence: 246.4]  [Reference Citation Analysis (0)]
99.  Wang H, Luo Y, Chu Z, Ni T, Ou S, Dai X, Zhang X, Liu Y. Poria Acid, Triterpenoids Extracted from Poria cocos, Inhibits the Invasion and Metastasis of Gastric Cancer Cells. Molecules. 2022;27.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 13]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
100.  Liu J, Chen Y, Cao Z, Guan B, Peng J, Zhan Z, Sferra TJ, Sankararaman S, Lin J. Babao Dan inhibits the migration and invasion of gastric cancer cells by suppressing epithelial-mesenchymal transition through the TGF-β/Smad pathway. J Int Med Res. 2020;48:300060520925598.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 11]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
101.  Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480-489.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2348]  [Cited by in F6Publishing: 2784]  [Article Influence: 198.9]  [Reference Citation Analysis (0)]
102.  Matsueda S, Graham DY. Immunotherapy in gastric cancer. World J Gastroenterol. 2014;20:1657-1666.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 64]  [Cited by in F6Publishing: 68]  [Article Influence: 6.2]  [Reference Citation Analysis (0)]
103.  Zhang Y, Lou Y, Wang J, Yu C, Shen W. Research Status and Molecular Mechanism of the Traditional Chinese Medicine and Antitumor Therapy Combined Strategy Based on Tumor Microenvironment. Front Immunol. 2020;11:609705.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 47]  [Cited by in F6Publishing: 94]  [Article Influence: 23.5]  [Reference Citation Analysis (0)]
104.  Lu X, Li Y, Yang W, Tao M, Dai Y, Xu J, Xu Q. Inhibition of NF-κB is required for oleanolic acid to downregulate PD-L1 by promoting DNA demethylation in gastric cancer cells. J Biochem Mol Toxicol. 2021;35:e22621.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 15]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
105.  Zhuang H, Dai X, Zhang X, Mao Z, Huang H. Sophoridine suppresses macrophage-mediated immunosuppression through TLR4/IRF3 pathway and subsequently upregulates CD8(+) T cytotoxic function against gastric cancer. Biomed Pharmacother. 2020;121:109636.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 50]  [Article Influence: 8.3]  [Reference Citation Analysis (0)]
106.  Kanojia D, Garg M, Gupta S, Gupta A, Suri A. Sperm-associated antigen 9 is a novel biomarker for colorectal cancer and is involved in tumor growth and tumorigenicity. Am J Pathol. 2011;178:1009-1020.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 58]  [Cited by in F6Publishing: 68]  [Article Influence: 4.9]  [Reference Citation Analysis (0)]
107.  Tian SB, Yu JC, Liu YQ, Kang WM, Ma ZQ, Ye X, Yan C. MiR-30b suppresses tumor migration and invasion by targeting EIF5A2 in gastric cancer. World J Gastroenterol. 2015;21:9337-9347.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 35]  [Cited by in F6Publishing: 38]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
108.  Zhou Y, Xu Q, Shang J, Lu L, Chen G. Crocin inhibits the migration, invasion, and epithelial-mesenchymal transition of gastric cancer cells via miR-320/KLF5/HIF-1α signaling. J Cell Physiol. 2019;234:17876-17885.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39]  [Cited by in F6Publishing: 61]  [Article Influence: 10.2]  [Reference Citation Analysis (0)]
109.  Chen X, Yuan XN, Zhang Z, Gong PJ, Yin WN, Jiang Q, Xu J, Xu XL, Gao Y, Chen WL, Chen FF, Tian YH, Wei L, Zhang JW. Betulinic acid inhibits cell proliferation and migration in gastric cancer by targeting the NF-κB/VASP pathway. Eur J Pharmacol. 2020;889:173493.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 14]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
110.  Cai H, Chen X, Zhang J, Wang J. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway. J Nat Med. 2018;72:252-259.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 26]  [Cited by in F6Publishing: 31]  [Article Influence: 3.9]  [Reference Citation Analysis (0)]
111.  Yan X, Rui X, Zhang K. Baicalein inhibits the invasion of gastric cancer cells by suppressing the activity of the p38 signaling pathway. Oncol Rep. 2015;33:737-743.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 40]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
112.  Chen W, Yu Y, Yang N, Zhu J, Li K, Li R, Su W, Luo L, Hu L, Chen G, Deng H. Effects of Yangzheng Sanjie Decoction-containing serum mediated by microRNA-7 on cell proliferation and apoptosis in gastric cancer. Oncol Lett. 2018;15:3621-3629.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 5]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
113.  Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum. 1994;61:1-241.  [PubMed]  [DOI]  [Cited in This Article: ]
114.  Stoffel EM, Mangu PB, Gruber SB, Hamilton SR, Kalady MF, Lau MW, Lu KH, Roach N, Limburg PJ; American Society of Clinical Oncology;  European Society of Clinical Oncology. Hereditary colorectal cancer syndromes: American Society of Clinical Oncology Clinical Practice Guideline endorsement of the familial risk-colorectal cancer: European Society for Medical Oncology Clinical Practice Guidelines. J Clin Oncol. 2015;33:209-217.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 222]  [Cited by in F6Publishing: 246]  [Article Influence: 22.4]  [Reference Citation Analysis (0)]
115.  Tharmalingam N, Park M, Lee MH, Woo HJ, Kim HW, Yang JY, Rhee KJ, Kim JB. Piperine treatment suppresses Helicobacter pylori toxin entry in to gastric epithelium and minimizes β-catenin mediated oncogenesis and IL-8 secretion in vitro. Am J Transl Res. 2016;8:885-898.  [PubMed]  [DOI]  [Cited in This Article: ]
116.  Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet. 1975;2:58-60.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 725]  [Cited by in F6Publishing: 702]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
117.  Koulis A, Buckle A, Boussioutas A. Premalignant lesions and gastric cancer: Current understanding. World J Gastrointest Oncol. 2019;11:665-678.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 29]  [Cited by in F6Publishing: 26]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
118.  Yuasa Y. Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer. 2003;3:592-600.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 238]  [Cited by in F6Publishing: 246]  [Article Influence: 11.2]  [Reference Citation Analysis (0)]
119.  Malik TH, Sayahan MY, Al Ahmed HA, Hong X. Gastric Intestinal Metaplasia: An Intermediate Precancerous Lesion in the Cascade of Gastric Carcinogenesis. J Coll Physicians Surg Pak. 2017;27:166-172.  [PubMed]  [DOI]  [Cited in This Article: ]
120.  Zeng Z, Nian Q, Chen N, Zhao M, Zheng Q, Zhang G, Zhao Z, Chen Y, Wang J, Zeng J, Gong D, Tang J. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4. Biomed Pharmacother. 2022;145:112086.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 8]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
121.  Aziz F, Wang X, Liu J, Yan Q. Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro. 2016;31:158-166.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 41]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
122.  Zhang W, Shu H, Fang L, Tang N, Li Y, Guo B, Meng F. Cancer inhibition mechanism of lung cancer mouse model based on dye trace method. Saudi J Biol Sci. 2020;27:1155-1162.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 1]  [Article Influence: 0.2]  [Reference Citation Analysis (0)]
123.  Cui X, Shen YM, Jiang S, Qian DW, Shang EX, Zhu ZH, Duan JA. Comparative analysis of the main active components and hypoglycemic effects after the compatibility of Scutellariae Radix and Coptidis Rhizoma. J Sep Sci. 2019;42:1520-1527.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 7]  [Article Influence: 1.2]  [Reference Citation Analysis (0)]
124.  Dong LC, Fan YX, Yu Q, Ma J, Dong X, Li P, Li HJ. Synergistic effects of rhubarb-gardenia herb pair in cholestatic rats at pharmacodynamic and pharmacokinetic levels. J Ethnopharmacol. 2015;175:67-74.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 19]  [Cited by in F6Publishing: 14]  [Article Influence: 1.4]  [Reference Citation Analysis (0)]
125.  Deng X, Liu ZW, Wu FS, Li LH, Liang J. A clinical study of weining granules in the treatment of gastric precancerous lesions. J Tradit Chin Med. 2012;32:164-172.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 9]  [Article Influence: 0.7]  [Reference Citation Analysis (0)]
126.  Li HZ, Wang H, Wang GQ, Liu J, Zhao SM, Chen J, Song QW, Gao W, Qi XZ, Gao Q. Treatment of gastric precancerous lesions with Weiansan. World J Gastroenterol. 2006;12:5389-5392.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 13]  [Cited by in F6Publishing: 8]  [Article Influence: 0.4]  [Reference Citation Analysis (0)]
127.  Wang J, Xu L, Shi R, Huang X, Li SW, Huang Z, Zhang G. Gastric atrophy and intestinal metaplasia before and after Helicobacter pylori eradication: a meta-analysis. Digestion. 2011;83:253-260.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 150]  [Cited by in F6Publishing: 151]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
128.  Pan X, Tao H, Nie M, Liu Y, Huang P, Liu S, Sun W, Wu J, Ma T, Dai A, Lu J, Liu B, Zou X, Sun Q. A clinical study of traditional Chinese medicine prolonging the survival of advanced gastric cancer patients by regulating the immunosuppressive cell population: A study protocol for a multicenter, randomized controlled trail. Medicine (Baltimore). 2020;99:e19757.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 19]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
129.  Xu Y, Zhao AG, Li ZY, Zhao G, Cai Y, Zhu XH, Cao ND, Yang JK, Zheng J, Gu Y, Han YY, Zhu YJ, Yang JZ, Gao F, Wang Q. Survival benefit of traditional Chinese herbal medicine (a herbal formula for invigorating spleen) for patients with advanced gastric cancer. Integr Cancer Ther. 2013;12:414-422.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 28]  [Article Influence: 2.2]  [Reference Citation Analysis (0)]
130.  Shu P, Tang H, Zhou B, Wang R, Xu Y, Shao J, Qi M, Xia Y, Huang W, Liu S. Effect of Yiqi Huayu Jiedu decoction on stages II and III gastric cancer: A multicenter, prospective, cohort study. Medicine (Baltimore). 2019;98:e17875.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 20]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
131.  Lv S, Chen X, Chen Y, Gong D, Mao G, Shen C, Xia T, Cheng J, Luo Z, Cheng Y, Li W, Zeng J. Ginsenoside Rg3 induces apoptosis and inhibits proliferation by down-regulating TIGAR in rats with gastric precancerous lesions. BMC Complement Med Ther. 2022;22:188.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 8]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
132.  Yang C, Du W, Yang D. Inhibition of green tea polyphenol EGCG((-)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/β-catenin signalling pathway. Int J Food Sci Nutr. 2016;67:818-827.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 38]  [Cited by in F6Publishing: 42]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
133.  Fu JD, Yao JJ, Wang H, Cui WG, Leng J, Ding LY, Fan KY. Effects of EGCG on proliferation and apoptosis of gastric cancer SGC7901 cells via down-regulation of HIF-1α and VEGF under a hypoxic state. Eur Rev Med Pharmacol Sci. 2019;23:155-161.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 18]  [Reference Citation Analysis (0)]
134.  Geng X, Zhang X, Zhou B, Zhang C, Tu J, Chen X, Wang J, Gao H, Qin G, Pan W. Usnic Acid Induces Cycle Arrest, Apoptosis, and Autophagy in Gastric Cancer Cells In Vitro and In Vivo. Med Sci Monit. 2018;24:556-566.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 35]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
135.  Xu J, Wang Z, Huang Y, Wang Y, Xiang L, He X. A spirostanol saponin isolated from Tupistra chinensis Baker simultaneously induces apoptosis and autophagy by regulating the JNK pathway in human gastric cancer cells. Steroids. 2020;164:108737.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 5]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
136.  Chen J, Shi DY, Liu SL, Zhong L. Tanshinone IIA induces growth inhibition and apoptosis in gastric cancer in vitro and in vivo. Oncol Rep. 2012;27:523-528.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 24]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
137.  Sun JY, Zhu MZ, Wang SW, Miao S, Xie YH, Wang JB. Inhibition of the growth of human gastric carcinoma in vivo and in vitro by swainsonine. Phytomedicine. 2007;14:353-359.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 62]  [Cited by in F6Publishing: 56]  [Article Influence: 3.1]  [Reference Citation Analysis (0)]
138.  Li SG, Wang YY, Ye ZY, Shao QS, Tao HQ, Shu LS, Zhao YF, Yang YJ, Yang J, Peng T, Han B, Huang D. Proliferative and apoptotic effects of andrographolide on the BGC-823 human gastric cancer cell line. Chin Med J (Engl). 2013;126:3739-3744.  [PubMed]  [DOI]  [Cited in This Article: ]
139.  Liu G, Xiang T, Wu QF, Wang WX. Curcumin suppresses the proliferation of gastric cancer cells by downregulating H19. Oncol Lett. 2016;12:5156-5162.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 47]  [Cited by in F6Publishing: 61]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
140.  Lee HH, Lee S, Shin YS, Cho M, Kang H, Cho H. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma. Molecules. 2016;21.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 16]  [Cited by in F6Publishing: 22]  [Article Influence: 2.4]  [Reference Citation Analysis (0)]
141.  Saralamma VV, Nagappan A, Hong GE, Lee HJ, Yumnam S, Raha S, Heo JD, Lee SJ, Lee WS, Kim EH, Kim GS. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand. Int J Mol Sci. 2015;16:22676-22691.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 29]  [Article Influence: 2.9]  [Reference Citation Analysis (0)]
142.  Wang P, Jin JM, Liang XH, Yu MZ, Yang C, Huang F, Wu H, Zhang BB, Fei XY, Wang ZT, Xu R, Shi HL, Wu XJ. Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin. 2022;43:1581-1593.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 11]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
143.  Zang MD, Hu L, Fan ZY, Wang HX, Zhu ZL, Cao S, Wu XY, Li JF, Su LP, Li C, Zhu ZG, Yan M, Liu BY. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med. 2017;15:52.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 58]  [Cited by in F6Publishing: 77]  [Article Influence: 9.6]  [Reference Citation Analysis (0)]
144.  Zhu J, Wen K. Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother Res. 2018;32:1289-1296.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 31]  [Article Influence: 4.4]  [Reference Citation Analysis (0)]
145.  Zeng J, Guo J, Gong D, Zhang Y, You F, Liang C, Pan H, Cai T, Chen X, Chen L, Zhao Z. Weipixiao ameliorates gastric precancerous lesions in a rat's model by regulating GSK3¦Â and C-myc. J Tradit Chin Med. 2018;38:705-713.  [PubMed]  [DOI]  [Cited in This Article: ]
146.  Cai Y, Cao Y, Cheng S, Zou L, Yang T, Zhang Y, Shou Q, Chen B, Chen W. Study on the Mechanism of Sancao Tiaowei Decoction in the Treatment of MNNG-Induced Precancerous Lesions of Gastric Carcinoma Through Hedgehog Signaling Pathway. Front Oncol. 2022;12:841553.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
147.  Hao X, Zhou P, Yang Z, Yang T, Wang Y. The therapeutic effect of Huazhuojiedu decoction on precancerous lesions in a gastric cancer model via the regulation of lnc 517368. J Ethnopharmacol. 2022;283:114635.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
148.  Xu J, Shen W, Pei B, Wang X, Sun D, Li Y, Xiu L, Liu X, Lu Y, Zhang X, Yue X. Xiao Tan He Wei Decoction reverses MNNG-induced precancerous lesions of gastric carcinoma in vivo and vitro: Regulation of apoptosis through NF-κB pathway. Biomed Pharmacother. 2018;108:95-102.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 42]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
149.  Shen SW, Yuwen Y, Zhang ZL, Dong S, Liu JT, Wang XM. Effect of Jinguo Weikang Capsule on proto-oncogene expression of gastric mucosa in rats with gastric precancerous lesions. Chin J Integr Med. 2008;14:212-216.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 0.3]  [Reference Citation Analysis (0)]
150.  Wang X, Xu J, Zhang X, Zhang C, Zheng W, Jiao J, Liu X, Yue X. Effects of Jinlongshe granules on gastric precancerous lesions in rats and its mechanism. Int J Clin Exp Pathol. 2020;13:846-853.  [PubMed]  [DOI]  [Cited in This Article: ]
151.  Yi Z, Jia Q, Lin Y, Wang Y, Cong J, Gu Z, Ling J, Cai G. Mechanism of Elian granules in the treatment of precancerous lesions of gastric cancer in rats through the MAPK signalling pathway based on network pharmacology. Pharm Biol. 2022;60:87-95.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 10]  [Cited by in F6Publishing: 11]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
152.  Liu W, Zhao ZM, Liu YL, Pan HF, Lin LZ. Weipiling ameliorates gastric precancerous lesions in Atp4a(-/-) mice. BMC Complement Altern Med. 2019;19:318.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 11]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
153.  Fang SQ, Liu YH, Zhao KP, Zhang HX, Wang HW, Deng YH, Zhou YX, Ge GB, Ni HM, Chen QL. Transcriptional profiling and network pharmacology analysis identify the potential biomarkers from Chinese herbal formula Huosu Yangwei Formula treated gastric cancer in vivo. Chin J Nat Med. 2021;19:944-953.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
154.  Yuan M, Zou X, Liu S, Xu X, Wang H, Zhu M, Xie X, Wu J, Sun Q. Modified Jian-pi-yang-zheng decoction inhibits gastric cancer progression via the macrophage immune checkpoint PI3Kγ. Biomed Pharmacother. 2020;129:110440.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 8]  [Article Influence: 1.6]  [Reference Citation Analysis (0)]
155.  Li L, Jin XJ, Li JW, Li CH, Zhou SY, Li JJ, Feng CQ, Liu DL, Liu YQ. Systematic insight into the active constituents and mechanism of Guiqi Baizhu for the treatment of gastric cancer. Cancer Sci. 2021;112:1772-1784.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 16]  [Article Influence: 4.0]  [Reference Citation Analysis (0)]