Published online Dec 15, 2019. doi: 10.4251/wjgo.v11.i12.1218
Peer-review started: March 4, 2019
First decision: June 5, 2019
Revised: July 9, 2019
Accepted: October 3, 2019
Article in press: October 3, 2019
Published online: December 15, 2019
Processing time: 284 Days and 4 Hours
This study highlighted several aspects related to convolutional neural networks (CNNs). First, CNNs have potential use in identifying HCC and differentiating HCC from other liver masses with high accuracy. Second, CNNs can offer several functions concerning liver cancer, including lesion detection, classification, and segmentation. Third, the use of CNN in liver cancer is not limited to radiological images, but it is of value in pathological and cellular studies. However, the study identified several limitations in the literature in this area, mainly the smaller number of studies on the topic and the lack of studies from multi-centres as well as the lack of longitudinal liver computed tomography (CT) scan studies that can enable comparing outcomes with existing stand-alone and follow-up methods. These longitudinal studies could allow researchers to compare changes with the baseline scan and thus could offer better detection of new small liver tumours.
Recently, an increasing interest in the use of deep learning has emerged in research, particularly CNNs, a class of artificial intelligence that has been widely used in biomedical research. This study reviews the current literature on the use of CNNs in assessing hepatocellular carcinoma (HCC) and liver masses and how such advanced technology can help improve clinical diagnosis.
While the study focuses on an evolving field in gastroenterology and oncology with promising outcomes, several researchers reported difficulties in obtaining images, which make the direct application of machine learning algorithms inappropriate for medical datasets and hence affect the capacity to conduct image classification with high accuracy. Therefore, improvement in the design of CNNs and multi-institute and multi-centre collaborations with a large number of patients with cirrhosis due to different pathological causes and patients with HCC on top of cirrhosis or liver secondaries is needed.
The study aimed at assessing the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of the CNNs and their performance.
Several databases, including PubMed, EMBASE, and Web of Science, were systematically searched for studies that covered pathological anatomy, cellular, and radiological images on HCC or liver masses using the CNNs. The data were extracted as per a predefined extraction protocol, and the accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed. The primary outcomes of the study were investigating the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.
A small number of studies were identified. The studies demonstrated the ability to differentiate liver masses, differentiate HCC from other liver lesions, and differentiate HCC from cirrhosis or development of new tumours. Two studies focused on HCC nuclei grading or segmentation. In these studies, the CNNs showed satisfactory levels of accuracy. The studies aimed at detecting lesions, classification, and segmentation. Several methods were used to assess the accuracy of CNN models used.
While the current studies have covered liver cancers, the number of studies conducted so far is small and limited, and more research is needed to answer questions about the accuracy and sensitivity of the CNN algorithms. The CNNs demonstrated abilities in segmentation, classification, and lesion detection in radiological and anatomical pathology images of common cancers. However, several deficiencies in current studies were observed.
A large multi-centre trial is needed to evaluate carefully the use of CNNs and their clinical applications in HCC and liver masses. Differentiation between primary and secondary (metastases in the liver) or other liver masses is hard based on radiological imaging. The studies included in this review showed that CT-based deep learning methods could enable the categorisation of liver metastases from primary liver cancers. Future studies should give more attention to the assessment of accuracy and sensitivity of the CNNs in evaluating the performance of systems and calculating the positive predictive values.