Published online Oct 15, 2021. doi: 10.4251/wjgo.v13.i10.1213
Peer-review started: March 22, 2021
First decision: June 14, 2021
Revised: June 28, 2021
Accepted: August 12, 2021
Article in press: August 12, 2021
Published online: October 15, 2021
Processing time: 205 Days and 6.7 Hours
The incidence and mortality of hepatocellular carcinoma have continued to increase over the last few years, and the medicine-based outlook of patients is poor. Given great ideas from the development of nanotechnology in medicine, especially the advantages in the treatments of liver cancer. Some engineering nanoparticles with active targeting, ligand modification, and passive targeting capacity achieve efficient drug delivery to tumor cells. In addition, the behavior of drug release is also applied to the drug loading nanosystem based on the tumor microenvironment. Considering clinical use of local treatment of liver cancer, in situ drug delivery of nanogels is also fully studied in orthotopic chemotherapy, radiotherapy, and ablation therapy. Furthermore, novel therapies including gene therapy, phototherapy, and immunotherapy are also applied as combined therapy for liver cancer. Engineering nonviral polymers to function as gene delivery vectors with increased efficiency and specificity, and strategies of co-delivery of therapeutic genes and drugs show great therapeutic effect against liver tumors, including drug-resistant tumors. Phototherapy is also applied in surgical procedures, chemotherapy, and immunotherapy. Combination strategies significantly enhance therapeutic effects and decrease side effects. Overall, the application of nanotechnology could bring a revolutionary change to the current treatment of liver cancer.
Core Tip: With the development of nanotheranostic strategies for liver cancer treatment, the efficacy of drug delivery is improved by smart nanoparticles with excellent targeting capacity. To overcome the complex tumor microenvironment, nanosystems with combined strategies of curative or palliative treatments have significant synergistic therapeutic effect against unfavorable clinical obstacles in the treatment of liver cancer.