Published online Apr 15, 2019. doi: 10.4251/wjgo.v11.i4.281
Peer-review started: January 11, 2019
First decision: January 26, 2019
Revised: February 16, 2019
Accepted: February 27, 2019
Article in press: February 28, 2019
Published online: April 15, 2019
Processing time: 94 Days and 21.9 Hours
Gastric carcinogenesis can be induced by chronic inflammation triggered by Helicobacter pylori (H. pylori) infection. Tumor necrosis factor (TNF)-α and its receptors (TNFR1 and TNFR2) regulate important cellular processes, such as apoptosis and cell survival, and the disruption of which can lead to cancer. This signaling pathway is also modulated by microRNAs (miRNAs), altering gene expression.
To evaluate the mRNA and miRNAs expression involved in the TNF-α signaling pathway in gastric cancer (GC) tissues and its relationship.
Quantitative polymerase chain reaction (qPCR) by TaqMan® assay was used to quantify the RNA transcript levels of TNF-α signaling pathway (TNF, TNFR1, TNFR2, TRADD, TRAF2, CFLIP, NFKB1, NFKB2, CASP8, CASP3) and miRNAs that targets genes from this pathway (miR-19a, miR-34a, miR-103a, miR-130a, miR-181c) in 30 GC fresh tissue samples. Molecular diagnosis of H. pylori was performed by nested PCR for gene HSP60. A miRNA:mRNA interaction network was construct using Cytoscape v3.1.1 from the in silico analysis performed using public databases.
Up-regulation of cellular survival genes as TNF, TNFR2, TRADD, TRAF2, CFLIP, and NFKB2, besides CASP8 and miR-34a was observed in GC tissues, whereas mediators of apoptosis such as TNFR1 and CASP3 were down-regulated. When the samples were stratified by histological type, the expression of miR-103a and miR-130a was significantly increased in the diffuse-type of GC compared to the intestinal-type. However, no influence of H. pylori infection was observed on the expression levels of mRNA and miRNAs analyzed. Moreover, the miRNA:mRNA interaction network showed several interrelations between the miRNAs and their target genes, highlighting miR-19a and miR-103a, which has as predicted or validated target a large number of genes in the TNF-α pathway, including TNF, TNFR1, TNFR2, CFLIP, TRADD, CASP3 and CASP8.
Our findings show that cell survival genes mediated by TNF/TNFR2 binding is up-regulated in GC favoring its pro-tumoral effect, while pro-apoptotic genes as CASP3 and TNFR1 are down-regulated, indicating disbalance between apoptosis and cell proliferation processes in this neoplasm. This process can also be influenced by an intricate regulatory network of miRNA:mRNA.
Core tip: We evaluated the expression of mRNA and microRNAs (miRNAs) related to the tumor necrosis factor (TNF)-α signaling pathway in gastric cancer (GC) fresh tissues. Our study shows up-regulation of cell survival genes (TNF, TNFR2, TRADD, TRAF2, CFLIP, NFKB2, CASP8) of this signaling pathway in GC, stimulating cell growth possibly by TNFR2 and negatively controls TNFR1-mediated apoptosis by down-regulation of pro-apoptotic mediators (TNFR1 and CASP3). Furthermore, interaction network between miRNAs and mRNA investigated suggests that TNF-α signaling pathway can be regulated by the action of miRNAs, mainly miR-19a and miR-103a, which may influence tumor development. Ours findings suggest TNFR2 as a potential therapeutic target for GC.