BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Azer SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review. World J Gastrointest Oncol 2019; 11(12): 1218-1230 [PMID: 31908726 DOI: 10.4251/wjgo.v11.i12.1218]
URL: https://www.wjgnet.com/1948-5204/full/v11/i12/1218.htm
Number Citing Articles
1
Adriana Domínguez-Oliva, Ismael Hernández-Ávalos, Julio Martínez-Burnes, Adriana Olmos-Hernández, Antonio Verduzco-Mendoza, Daniel Mota-Rojas. The Importance of Animal Models in Biomedical Research: Current Insights and ApplicationsAnimals 2023; 13(7): 1223 doi: 10.3390/ani13071223
2
Huan Yu, Zhenwei Wang, Yiqing Sun, Wenwei Bo, Kai Duan, Chunhua Song, Yi Hu, Jie Zhou, Zizhang Mu, Ning Wu. Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomicsFrontiers in Psychiatry 2023; 13 doi: 10.3389/fpsyt.2022.1105496
3
Javaria Amin, Muhammad Almas Anjum, Muhammad Sharif, Seifedine Kadry, Ahmed Nadeem, Sheikh F. Ahmad. Liver Tumor Localization Based on YOLOv3 and 3D-Semantic Segmentation Using Deep Neural NetworksDiagnostics 2022; 12(4): 823 doi: 10.3390/diagnostics12040823
4
Nelson S Yee. Machine intelligence for precision oncologyWorld Journal of Translational Medicine 2021; 9(1): 1-10 doi: 10.5528/wjtm.v9.i1.1
5
Rayyan Azam Khan, Minghan Fu, Brent Burbridge, Yigang Luo, Fang-Xiang Wu. A multi-modal deep neural network for multi-class liver cancer diagnosisNeural Networks 2023; 165: 553 doi: 10.1016/j.neunet.2023.06.013
6
George E Fowler, Rhiannon C Macefield, Conor Hardacre, Mark P Callaway, Neil J Smart, Natalie S Blencowe. Artificial intelligence as a diagnostic aid in cross-sectional radiological imaging of the abdominopelvic cavity: a protocol for a systematic reviewBMJ Open 2021; 11(10): e054411 doi: 10.1136/bmjopen-2021-054411
7
Joseph C Ahn, Touseef Ahmad Qureshi, Amit G Singal, Debiao Li, Ju-Dong Yang. Deep learning in hepatocellular carcinoma: Current status and future perspectivesWorld Journal of Hepatology 2021; 13(12): 2039-2051 doi: 10.4254/wjh.v13.i12.2039
8
Yuxiang Wang, Zhongming Huang. High precision detection of small hepatocellular carcinoma using improved EfficientNet with Self-Attention2022 IEEE/ACIS 22nd International Conference on Computer and Information Science (ICIS) 2022; : 76 doi: 10.1109/ICIS54925.2022.9882470
9
Ching-Juei Yang, Chien-Kuo Wang, Yu-Hua Dean Fang, Jing-Yao Wang, Fong-Chin Su, Hong-Ming Tsai, Yih-Jyh Lin, Hung-Wen Tsai, Lee-Ren Yeh, Khanh N.Q. Le. Clinical application of mask region-based convolutional neural network for the automatic detection and segmentation of abnormal liver density based on hepatocellular carcinoma computed tomography datasetsPLOS ONE 2021; 16(8): e0255605 doi: 10.1371/journal.pone.0255605
10
Gengxin Chen, Hongwei Cai, Yan Zhang. Detection and Assessment of Hull Plate Corrosion Damage Based on Image Recognition TechniquesCorrosion 2024; 80(10): 1033 doi: 10.5006/4580
11
Efficient Local Cloud-Based Solution for Liver Cancer Detection Using Deep LearningInternational Journal of Cloud Applications and Computing 2021; 12(1): 1 doi: 10.4018/IJCAC.2022010109
12
Rakesh Kalapala, Hardik Rughwani, D. Nageshwar Reddy. Artificial Intelligence in Hepatology- Ready for the PrimetimeJournal of Clinical and Experimental Hepatology 2023; 13(1): 149 doi: 10.1016/j.jceh.2022.06.009
13
Yan Zhu, Aihong Yu, Huan Rong, Dongqing Wang, Yuqing Song, Zhe Liu, Victor S. Sheng. Multi-Resolution Image Segmentation Based on a Cascaded U-ADenseNet for the Liver and TumorsJournal of Personalized Medicine 2021; 11(10): 1044 doi: 10.3390/jpm11101044
14
Xue-Qin Gong, Yun-Yun Tao, Yao–Kun Wu, Ning Liu, Xi Yu, Ran Wang, Jing Zheng, Nian Liu, Xiao-Hua Huang, Jing-Dong Li, Gang Yang, Xiao-Qin Wei, Lin Yang, Xiao-Ming Zhang. Progress of MRI Radiomics in Hepatocellular CarcinomaFrontiers in Oncology 2021; 11 doi: 10.3389/fonc.2021.698373
15
Songhui Diao, Xiang Liu, Xuan Liu, Boyun Zheng, Jiahui He, Yaoqin Xie, Wenjian Qin. Self-supervised multi-magnification feature enhancement for segmentation of hepatocellular carcinoma region in pathological imagesEngineering Applications of Artificial Intelligence 2024; 133: 108335 doi: 10.1016/j.engappai.2024.108335
16
Shi Feng, Xiaotian Yu, Wenjie Liang, Xuejie Li, Weixiang Zhong, Wanwan Hu, Han Zhang, Zunlei Feng, Mingli Song, Jing Zhang, Xiuming Zhang. Development of a Deep Learning Model to Assist With Diagnosis of Hepatocellular CarcinomaFrontiers in Oncology 2021; 11 doi: 10.3389/fonc.2021.762733
17
Francesco Fiz, Luca Viganò, Nicolò Gennaro, Guido Costa, Ludovico La Bella, Alexandra Boichuk, Lara Cavinato, Martina Sollini, Letterio S. Politi, Arturo Chiti, Guido Torzilli. Radiomics of Liver Metastases: A Systematic ReviewCancers 2020; 12(10): 2881 doi: 10.3390/cancers12102881
18
Norio Nakata, Tsuyoshi Siina. Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic MassesBioengineering 2023; 10(1): 69 doi: 10.3390/bioengineering10010069
19
B. Dhananjay, C.K. Narayanappa, B.V. Hiremath, P. Ravi, M. Lakshminarayana, Bala Chakravarthy Neelapu, J. Sivaraman. Advances in Computers 2024;  doi: 10.1016/bs.adcom.2024.06.001
20
Precilla S Daisy, T. S. Anitha. Can artificial intelligence overtake human intelligence on the bumpy road towards glioma therapy?Medical Oncology 2021; 38(5) doi: 10.1007/s12032-021-01500-2
21
Shruti Jayakumar, Viknesh Sounderajah, Pasha Normahani, Leanne Harling, Sheraz R. Markar, Hutan Ashrafian, Ara Darzi. Quality assessment standards in artificial intelligence diagnostic accuracy systematic reviews: a meta-research studynpj Digital Medicine 2022; 5(1) doi: 10.1038/s41746-021-00544-y
22
Uli Fehrenbach, Siyi Xin, Alexander Hartenstein, Timo Alexander Auer, Franziska Dräger, Konrad Froböse, Henning Jann, Martina Mogl, Holger Amthauer, Dominik Geisel, Timm Denecke, Bertram Wiedenmann, Tobias Penzkofer. Automatized Hepatic Tumor Volume Analysis of Neuroendocrine Liver Metastases by Gd-EOB MRI—A Deep-Learning Model to Support Multidisciplinary Cancer Conference Decision-MakingCancers 2021; 13(11): 2726 doi: 10.3390/cancers13112726
23
Vinícius Remus Ballotin, Lucas Goldmann Bigarella, John Soldera, Jonathan Soldera. Deep learning applied to the imaging diagnosis of hepatocellular carcinomaArtificial Intelligence in Gastrointestinal Endoscopy 2021; 2(4): 127-135 doi: 10.37126/aige.v2.i4.127
24
Yogesh Kumar, Surbhi Gupta, Ruchi Singla, Yu-Chen Hu. A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and DiagnosisArchives of Computational Methods in Engineering 2022; 29(4): 2043 doi: 10.1007/s11831-021-09648-w
25
Shunjiro Noguchi, Mizuho Nishio, Ryo Sakamoto, Masahiro Yakami, Koji Fujimoto, Yutaka Emoto, Takeshi Kubo, Yoshio Iizuka, Keita Nakagomi, Kazuhiro Miyasa, Kiyohide Satoh, Yuji Nakamoto. Deep learning–based algorithm improved radiologists’ performance in bone metastases detection on CTEuropean Radiology 2022; 32(11): 7976 doi: 10.1007/s00330-022-08741-3
26
Wenqi Shi, Sichi Kuang, Sue Cao, Bing Hu, Sidong Xie, Simin Chen, Yinan Chen, Dashan Gao, Yunqiang Chen, Yajing Zhu, Hanxi Zhang, Hui Liu, Meng Ye, Claude B. Sirlin, Jin Wang. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT imaging protocolAbdominal Radiology 2020; 45(9): 2688 doi: 10.1007/s00261-020-02485-8
27
Anas Taha, Vincent Ochs, Leos N. Kayhan, Bassey Enodien, Daniel M. Frey, Lukas Krähenbühl, Stephanie Taha-Mehlitz. Advancements of Artificial Intelligence in Liver-Associated Diseases and SurgeryMedicina 2022; 58(4): 459 doi: 10.3390/medicina58040459
28
Jiayue Cui, Hongjun Wang. (Retracted) Algorithm of generating music melody based on single-exposure high dynamic range digital image using convolutional neural networkJournal of Electronic Imaging 2022; 31(05) doi: 10.1117/1.JEI.31.5.051417
29
Anna Castaldo, Davide Raffaele De Lucia, Giuseppe Pontillo, Marco Gatti, Sirio Cocozza, Lorenzo Ugga, Renato Cuocolo. State of the Art in Artificial Intelligence and Radiomics in Hepatocellular CarcinomaDiagnostics 2021; 11(7): 1194 doi: 10.3390/diagnostics11071194
30
Nurbubu Moldogazieva, Innokenty Mokhosoev, Sergey Zavadskiy, Alexander Terentiev. Proteomic Profiling and Artificial Intelligence for Hepatocellular Carcinoma Translational MedicineBiomedicines 2021; 9(2): 159 doi: 10.3390/biomedicines9020159
31
Reshma Jose, Shanty Chacko, J. Jayakumar, T. Jarin. Liver Tumor Classification Using Optimal Opposition-Based Grey Wolf OptimizationInternational Journal of Pattern Recognition and Artificial Intelligence 2022; 36(16) doi: 10.1142/S0218001422400055
32
Amene Saghazadeh, Nima Rezaei. Handbook of Cancer and Immunology2023; : 1 doi: 10.1007/978-3-030-80962-1_309-1
33
Shanmugapriya Survarachakan, Pravda Jith Ray Prasad, Rabia Naseem, Javier Pérez de Frutos, Rahul Prasanna Kumar, Thomas Langø, Faouzi Alaya Cheikh, Ole Jakob Elle, Frank Lindseth. Deep learning for image-based liver analysis — A comprehensive review focusing on malignant lesionsArtificial Intelligence in Medicine 2022; 130: 102331 doi: 10.1016/j.artmed.2022.102331
34
Miguel Jiménez Pérez, Rocío González Grande. Application of artificial intelligence in the diagnosis and treatment of hepatocellular carcinoma: A reviewWorld Journal of Gastroenterology 2020; 26(37): 5617-5628 doi: 10.3748/wjg.v26.i37.5617
35
Delia Mitrea, Radu Badea, Paulina Mitrea, Stelian Brad, Sergiu Nedevschi. Hepatocellular Carcinoma Automatic Diagnosis within CEUS and B-Mode Ultrasound Images Using Advanced Machine Learning MethodsSensors 2021; 21(6): 2202 doi: 10.3390/s21062202
36
Seung-seob Kim, Dong Ho Lee, Min Woo Lee, So Yeon Kim, Jaeseung Shin, Jin-Young Choi, Byoung Wook Choi. Construction of a Standard Dataset for Liver Tumors for Testing the Performance and Safety of Artificial Intelligence-Based Clinical Decision Support SystemsJournal of the Korean Society of Radiology 2021; 82(5): 1196 doi: 10.3348/jksr.2020.0177
37
Donlapark Ponnoprat, Papangkorn Inkeaw, Jeerayut Chaijaruwanich, Patrinee Traisathit, Patumrat Sripan, Nakarin Inmutto, Wittanee Na Chiangmai, Donsuk Pongnikorn, Imjai Chitapanarux. Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase CT scansMedical & Biological Engineering & Computing 2020; 58(10): 2497 doi: 10.1007/s11517-020-02229-2
38
Johannes Eschrich, Zuzanna Kobus, Dominik Geisel, Sebastian Halskov, Florian Roßner, Christoph Roderburg, Raphael Mohr, Frank Tacke. The Diagnostic Approach towards Combined Hepatocellular-Cholangiocarcinoma—State of the Art and Future PerspectivesCancers 2023; 15(1): 301 doi: 10.3390/cancers15010301
39
T. Thangam, P. Thirumurugan, P. Shantha kumar. Analysis of automated detection methods for hepatocellular carcinoma4TH INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING & SCIENCE: Insight on the Current Research in Materials Engineering and Science 2022; 2660: 020008 doi: 10.1063/5.0111829
40
Saleh Alaraimi, Kenneth E. Okedu, Hugo Tianfield, Richard Holden, Omair Uthmani. Transfer learning networks with skip connections for classification of brain tumorsInternational Journal of Imaging Systems and Technology 2021; 31(3): 1564 doi: 10.1002/ima.22546
41
B. Lakshmipriya, Biju Pottakkat, G. Ramkumar. Deep learning techniques in liver tumour diagnosis using CT and MR imaging - A systematic reviewArtificial Intelligence in Medicine 2023; 141: 102557 doi: 10.1016/j.artmed.2023.102557
42
Dinh‐Van Phan, Chien‐Lung Chan, Ai‐Hsien Adams Li, Ting‐Ying Chien, Van‐Chuc Nguyen. Liver cancer prediction in a viral hepatitis cohort: A deep learning approachInternational Journal of Cancer 2020; 147(10): 2871 doi: 10.1002/ijc.33245
43
Rajesh Kumar Mokhria, Jasbir Singh. Role of artificial intelligence in the diagnosis and treatment of hepatocellular carcinomaArtificial Intelligence in Gastroenterology 2022; 3(4): 96-104 doi: 10.35712/aig.v3.i4.96
44
Song-Toan Tran, Ching-Hwa Cheng, Don-Gey Liu. A Multiple Layer U-Net, Un-Net, for Liver and Liver Tumor Segmentation in CTIEEE Access 2021; 9: 3752 doi: 10.1109/ACCESS.2020.3047861
45
Jonathan R. Dillman, Elan Somasundaram, Samuel L. Brady, Lili He. Current and emerging artificial intelligence applications for pediatric abdominal imagingPediatric Radiology 2022; 52(11): 2139 doi: 10.1007/s00247-021-05057-0
46
Lekshmi Kalinathan, Deepika Sivasankaran, Janet Reshma Jeyasingh, Amritha Sennappa Sudharsan, Hareni Marimuthu. Hepatocellular Carcinoma - Challenges and Opportunities of a Multidisciplinary Approach2022;  doi: 10.5772/intechopen.99841
47
Maryam Dinpajhouh, Seyyed Ali Seyyedsalehi. Automated detecting and severity grading of diabetic retinopathy using transfer learning and attention mechanismNeural Computing and Applications 2023; 35(33): 23959 doi: 10.1007/s00521-023-09001-1
48
Rayyan Azam Khan, Yigang Luo, Fang-Xiang Wu. Machine learning based liver disease diagnosis: A systematic reviewNeurocomputing 2022; 468: 492 doi: 10.1016/j.neucom.2021.08.138
49
T. K. R. Agita, M. Arun, K. Immanuvel Arokia James, S. Arthi, P. Somasundari, M. Moorthi, K. Sureshkumar. Emerging Trends in Expert Applications and SecurityLecture Notes in Networks and Systems 2023; 681: 285 doi: 10.1007/978-981-99-1909-3_26
50
Kamyab Keshtkar, Abbas Keshtkar, Alireza Safarpour. Classifying colorectal cancer or colorectal polyps in endoscopic setting using convolutional neural network: protocol for a systematic review and meta-analysisF1000Research 2020; 9: 1086 doi: 10.12688/f1000research.25548.1
51
Quirino Lai, Gabriele Spoletini, Gianluca Mennini, Zoe Larghi Laureiro, Diamantis I Tsilimigras, Timothy Michael Pawlik, Massimo Rossi. Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic reviewWorld Journal of Gastroenterology 2020; 26(42): 6679-6688 doi: 10.3748/wjg.v26.i42.6679
52
Haopeng Kuang, Zhongwei Yang, Xukun Zhang, Shunli Wang, Lihua Zhang. A Review of Artificial Intelligence in Preoperative Clinical Staging of Liver Cancer2021 International Conference on Networking Systems of AI (INSAI) 2021; : 69 doi: 10.1109/INSAI54028.2021.00024
53
Manh-Tien Nguyen, Thai Dinh Kim, Manh-Hung Ha, Anh-Luyen Do, Lan-Anh Nguyen, Dieu-Linh Ngo. Advanced Learning-Based Segmentation of Liver and Tumor 3D Images for Early Disease Diagnosis2023 RIVF International Conference on Computing and Communication Technologies (RIVF) 2023; : 101 doi: 10.1109/RIVF60135.2023.10471798
54
Qingzeng Xu, Jun Ye. Image Fusion and Stylization Processing Based on Multiscale Transformation and Convolutional Neural NetworkComputational Intelligence and Neuroscience 2022; 2022: 1 doi: 10.1155/2022/1181189
55
Jian Zhang, Shenglan Huang, Yongkang Xu, Jianbing Wu. Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-AnalysisFrontiers in Oncology 2022; 12 doi: 10.3389/fonc.2022.763842
56
Chen Chen, Cheng Chen, Mingrui Ma, Xiaojian Ma, Xiaoyi Lv, Xiaogang Dong, Ziwei Yan, Min Zhu, Jiajia Chen. Classification of multi-differentiated liver cancer pathological images based on deep learning attention mechanismBMC Medical Informatics and Decision Making 2022; 22(1) doi: 10.1186/s12911-022-01919-1
57
Yingjie Tian, Minghao Liu, Yu Sun, Saiji Fu. When liver disease diagnosis encounters deep learning: Analysis, challenges, and prospectsiLIVER 2023; 2(1): 73 doi: 10.1016/j.iliver.2023.02.002
58
Keyur Radiya, Henrik Lykke Joakimsen, Karl Øyvind Mikalsen, Eirik Kjus Aahlin, Rolv-Ole Lindsetmo, Kim Erlend Mortensen. Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic reviewEuropean Radiology 2023; 33(10): 6689 doi: 10.1007/s00330-023-09609-w
59
Jan Egger, Christina Gsaxner, Antonio Pepe, Kelsey L. Pomykala, Frederic Jonske, Manuel Kurz, Jianning Li, Jens Kleesiek. Medical deep learning—A systematic meta-reviewComputer Methods and Programs in Biomedicine 2022; 221: 106874 doi: 10.1016/j.cmpb.2022.106874
60
Elena Codruta Gheorghe, Carmen Nicolau, Adina Kamal, Anca Udristoiu, Lucian Gruionu, Adrian Saftoiu. Artificial Intelligence (AI)-Enhanced Ultrasound Techniques Used in Non-Alcoholic Fatty Liver Disease: Are They Ready for Prime Time?Applied Sciences 2023; 13(8): 5080 doi: 10.3390/app13085080
61
Qi Feng, Han Chen, Ruohan Jiang. Analysis of early warning of corporate financial risk via deep learning artificial neural networkMicroprocessors and Microsystems 2021; 87: 104387 doi: 10.1016/j.micpro.2021.104387
62
Mehrun Nisa, Saeed Ahmad Buzdar, Khalil Khan, Muhammad Saeed Ahmad. Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography ImagesSymmetry 2022; 14(2): 383 doi: 10.3390/sym14020383
63
Khaled Bousabarah, Brian Letzen, Jonathan Tefera, Lynn Savic, Isabel Schobert, Todd Schlachter, Lawrence H. Staib, Martin Kocher, Julius Chapiro, MingDe Lin. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learningAbdominal Radiology 2021; 46(1): 216 doi: 10.1007/s00261-020-02604-5