Khojasteh A, Motamedian SR, Rad MR, Shahriari MH, Nadjmi N. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation. World J Stem Cells 2015; 7(10): 1215-1221 [PMID: 26640621 DOI: 10.4252/wjsc.v7.i10.1215]
Corresponding Author of This Article
Nasser Nadjmi, MD, DDS, PhD, EFOMFS, Director, Professor and Coordinating Program Director, the Team for Cleft and Craniofacial Anomalies, Oral and Maxillofacial Surgery, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium. nasser@nadjmi.com
Research Domain of This Article
Allergy
Article-Type of This Article
Basic Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Arash Khojasteh, Oral and Maxillofacial Surgery, Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran
Saeed Reza Motamedian, Maryam Rezai Rad, Mehrnoosh Hasan Shahriari, Dental Research Center , Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran 19839, Iran
Nasser Nadjmi, the Team for Cleft and Craniofacial Anomalies, Oral and Maxillofacial Surgery, University of Antwerp, 2000 Antwerp, Belgium
Author contributions: All authors contributed to this manuscript.
Institutional review board statement: Human dental pulp stem cells were established from tooth pulp tissues of healthy volunteer donors after obtaining written consent form from patients and a protocol approved by the Dental Committee Research, School of Dentistry, Shahid Beheshti University of Medical sciences.
Institutional animal care and use committee statement: None.
Conflict-of-interest statement: The authors declare no conflict of interest.
Data sharing statement: None.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Nasser Nadjmi, MD, DDS, PhD, EFOMFS, Director, Professor and Coordinating Program Director, the Team for Cleft and Craniofacial Anomalies, Oral and Maxillofacial Surgery, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium. nasser@nadjmi.com
Telephone: +32-32-402611
Received: June 8, 2015 Peer-review started: June 10, 2015 First decision: August 4, 2015 Revised: September 30, 2015 Accepted: October 23, 2015 Article in press: October 27, 2015 Published online: November 26, 2015 Processing time: 172 Days and 4 Hours
Core Tip
Core tip: Recently, the plasticity of postnatal stem cells from dental origin including human dental pulp stem cells (hDPSCs) has been suggested. Their osteogenic potential makes them valuable for craniofacial bone regeneration. hDPSCs can be easily isolated from dental medical wastes, extracted teeth, and expanded ex vivo. Combination of numerous postnatal stem cells and three-dimensional scaffold biomaterials has been used in bone tissue engineering. Selection of an ideal scaffold biomaterial is a challenging part of reconstructive surgeries. Current study aims to evaluate behavior of hDPSCs including adhesion, proliferation, morphology and differentiation on four different scaffold biomaterials. Our finding indicates that PLLA (Synthetic) scaffold supports adhesion, proliferation and osteogenic differentiation of hDPSCs. Therefore, it can be useful for the purpose of craniofacial tissue engineering.