Dwivedi S, Pareek P, Vishnoi JR, Sharma P, Misra S. Downregulation of miRNA-21 and cancer stem cells after chemotherapy results in better outcome in breast cancer patients. World J Stem Cells 2022; 14(4): 310-313 [PMID: 35662862 DOI: 10.4252/wjsc.v14.i4.310]
Corresponding Author of This Article
Shailendra Dwivedi, MAMS, Assistant Professor, Biochemistry, All India Institute of Medical Sciences Gorakhpur India, Kunra Ghat Gorakhpur, Gorakhpur 273008, Uttar Pradesh, India. tarang2016@gmail.com
Research Domain of This Article
Biochemistry & Molecular Biology
Article-Type of This Article
Letter to the Editor
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Shailendra Dwivedi, Biochemistry, All India Institute of Medical Sciences Gorakhpur India, Gorakhpur 273008, Uttar Pradesh, India
Puneet Pareek, Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur 342005, Rajasthan, India
Jeewan Ram Vishnoi, Surgical Oncology, All India Institute of Medical Sciences, Jodhpur 342005, Rajasthan, India
Praveen Sharma, Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, Rajasthan, India
Sanjeev Misra, Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur 342005, Rajasthan, India
Sanjeev Misra, King George’s Medical University, Lucknow 226003, Uttar Pradesh, India
Author contributions: Dwivedi S conducted the experiment; Pareek P, Vishnoi JR, and Misra S provided clinical guidance; and Sharma P interpreted and analyzed the results.
Supported bySERB: Department of Science and Technology, New Delhi, No. NPDF: SERB 2015/000322.
Conflict-of-interest statement: The authors declare that there is no conflict of interest. Funding support was received by SERB: NPDF, New Delhi.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Shailendra Dwivedi, MAMS, Assistant Professor, Biochemistry, All India Institute of Medical Sciences Gorakhpur India, Kunra Ghat Gorakhpur, Gorakhpur 273008, Uttar Pradesh, India. tarang2016@gmail.com
Received: July 22, 2021 Peer-review started: July 22, 2021 First decision: August 8, 2021 Revised: August 14, 2021 Accepted: April 2, 2022 Article in press: April 2, 2022 Published online: April 26, 2022 Processing time: 278 Days and 5 Hours
Core Tip
Core Tip: Epigenetic modification by non-coding RNAs (miRNA), along with the discovery of a cancer stem cell (CSC) database for all cancer types, has revolutionized oncology. The hallmarks of cancer include six capabilities acquired during the development of human tumors. These include sustaining proliferative signaling, evading growth suppressors, resisting cell death, facilitating replicative immortality, promoting angiogenesis, and promoting invasion and metastasis. These hallmarks are primarily manifestations of genome instability, which facilitates their acquisition, epigenetic modifications, and CSCs (Heterogenic tissue populations), which play vital roles in nurturing multiple hallmark functions. These alterations can be explored and targeted for better cancer management.