Published online Apr 26, 2022. doi: 10.4252/wjsc.v14.i4.310
Peer-review started: July 22, 2021
First decision: August 8, 2021
Revised: August 14, 2021
Accepted: April 2, 2022
Article in press: April 2, 2022
Published online: April 26, 2022
Processing time: 278 Days and 5 Hours
Epigenetic modifications have been observed as a decline in miRNA-21 expression and breast cancer stem cell (CSC) population after 3 cycles of standard chemotherapy. The epigenetic response (miRNAs expression) and CSCs are also correlated in patients with Breast Cancer. In patients who tolerated chemotherapy well, miRNA-21 (non-coding RNA) expression decreased significantly after three cycles of chemotherapy. The miRNA-21 expression in breast cancer tissue was quantified by quantitative PCR (real-time PCR) using the standard protocol. In addition, breast CSCs (CD44+/CD24-) were also decreased in these patients. The miRNA-21 regulates cell division, proliferation, and autophagy of cancerous cells (as it targets phosphatase and tensin homolog/AKT/transcription factor EB/programmed cell death 4/autophagy-related protein 5 and chemotherapy also produces similar effects), thereby contributing to these benefits. Therefore, when all of the targets on genes have been explored by mimic miRNA, chemotherapy combined with anti-miRNA21 therapy may prove useful in the care of cancer patients.
Core Tip: Epigenetic modification by non-coding RNAs (miRNA), along with the discovery of a cancer stem cell (CSC) database for all cancer types, has revolutionized oncology. The hallmarks of cancer include six capabilities acquired during the development of human tumors. These include sustaining proliferative signaling, evading growth suppressors, resisting cell death, facilitating replicative immortality, promoting angiogenesis, and promoting invasion and metastasis. These hallmarks are primarily manifestations of genome instability, which facilitates their acquisition, epigenetic modifications, and CSCs (Heterogenic tissue populations), which play vital roles in nurturing multiple hallmark functions. These alterations can be explored and targeted for better cancer management.