Copyright
©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Sep 26, 2021; 13(9): 1338-1348
Published online Sep 26, 2021. doi: 10.4252/wjsc.v13.i9.1338
Published online Sep 26, 2021. doi: 10.4252/wjsc.v13.i9.1338
Advanced glycation end productions and tendon stem/progenitor cells in pathogenesis of diabetic tendinopathy
Liu Shi, Pan-Pan Lu, Guang-Chun Dai, Yun-Feng Rui, Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
Ying-Juan Li, Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
Author contributions: Shi L wrote the paper; Lu PP provided assistance with the figure preparation; Dai GC assisted in performing the search and collection of the relevant publications; Li YJ provided input during the drafting of the paper; Rui YF revised and proofread the paper.
Supported by National Natural Science Foundation of China , No. 81572187 and No. 81871812 ; Jiangsu Provincial Medical Talent , The Project of Invigorating Health Care through Science, Technology and Education, No. ZDRCA2016083; Natural Science Foundation of Jiangsu Province for Young Scholars , China, No. BK20200398; Entrepreneurship and Innovation Program of Jiangsu Province , China, No. 1190000054; and The Six Projects Sponsoring Talent Summits of Jiangsu Province , China, No. LGY2017099.
Conflict-of-interest statement: The authors have no conflict of interest for this manuscript.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Yun-Feng Rui, MD, PhD, Deputy Director, Professor, Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, Jiangsu Province, China. ruiyunfeng@126.com
Received: April 6, 2021
Peer-review started: April 6, 2021
First decision: May 12, 2021
Revised: May 26, 2021
Accepted: August 17, 2021
Article in press: August 17, 2021
Published online: September 26, 2021
Processing time: 165 Days and 9 Hours
Peer-review started: April 6, 2021
First decision: May 12, 2021
Revised: May 26, 2021
Accepted: August 17, 2021
Article in press: August 17, 2021
Published online: September 26, 2021
Processing time: 165 Days and 9 Hours
Core Tip
Core Tip: Patients with diabetic tendinopathy usually suffer from chronic pain, restricted joint motion, calcium deposition, and even tendon rupture. Advanced glycation end products (AGEs) have been shown to affect tendon biology and biomechanical properties. In addition, tendon-derived stem/progenitor cells (TSPCs) play an important role in tendon hemostasis, regeneration, and repair. However, the relationships between diabetic tendinopathy, AGEs, and TSPCs remain unclear. Thus, in this review, we summarize the current findings and discuss the possible relationships between AGEs and TSPCs. This might provide new guidance for the development of effective treatments for diabetic tendinopathy.