Review
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. May 26, 2023; 15(5): 281-301
Published online May 26, 2023. doi: 10.4252/wjsc.v15.i5.281
How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells
María Belén Novoa Díaz, Pedro Carriere, Claudia Gentili
María Belén Novoa Díaz, Pedro Carriere, Claudia Gentili, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
María Belén Novoa Díaz, Pedro Carriere, Claudia Gentili, Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
Author contributions: Novoa Díaz MB and Carriere P contributed to conceptualization, methodology, investigation, formal analysis, visualization, writing-original draft, and writing-review and editing; Gentili C contributed to conceptualization, methodology, resources, investigation, formal analysis, visualization, writing-original draft, supervision, writing-review and editing, project administration, and funding acquisition.
Supported by Agencia Nacional de Promoción Científica y Tecnológica, No. PICT-2020-SERIEA-03440 and PICT-2013-1441; Consejo Nacional de Investigaciones Científicas y Técnicas, No. PIP11220200103061CO and PIP11220150100350CO; Instituto Nacional del Cáncer Asistencia Financiera II, RESOL 493/14, No. 2002-4395-14-1; Instituto Nacional del Cáncer Asistencia Financiera III-2016-2017, RESOL-2016-1006-E-APN-MS, No. 2002-3862-16-1 CANCER; Universidad Nacional del Sur, No. PGI: 24/B230 and PGI: 24/B303; and Fundación Alberto J Roemmers of Argentina.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Claudia Gentili, PhD, Professor, Research Scientist, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, 670 San Juan, Bahía Blanca 8000, Buenos Aires, Argentina. cgentili@criba.edu.ar
Received: December 26, 2022
Peer-review started: December 26, 2022
First decision: February 16, 2023
Revised: March 6, 2023
Accepted: April 17, 2023
Article in press: April 17, 2023
Published online: May 26, 2023
Processing time: 150 Days and 21.1 Hours
Abstract

Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.

Keywords: Colorectal cancer; Colorectal cancer stem cells; Tumor microenvironment factors; Tumor stroma; Gut microbiota; Cancer progression

Core Tip: Colorectal cancer (CRC) represents one of the most prevalent tumors worldwide. The tumor microenvironment (TME) through its proinflammatory role, among others, actively participates in CRC progression and the disturbance of gut microbiota (dysbiosis) can influence this inflammatory process. CRC stem cells (CCSC) are a tumor cell subpopulation that drives CRC initiation, progression and treatment failure. The features and behavior of CCSC are modulated by several factors including TME and gut microbiota. Here, we will give an overview of the synergistic interaction among TME and intestinal microorganisms that condition the CRC environment and shape CCSC characteristics allowing CRC evolution.