Review
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Aug 26, 2020; 12(8): 776-786
Published online Aug 26, 2020. doi: 10.4252/wjsc.v12.i8.776
Autophagy in fate determination of mesenchymal stem cells and bone remodeling
Xiao-Dan Chen, Jia-Li Tan, Yi Feng, Li-Jia Huang, Mei Zhang, Bin Cheng
Xiao-Dan Chen, Jia-Li Tan, Yi Feng, Li-Jia Huang, Mei Zhang, Bin Cheng, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China
Author contributions: Chen XD was involved in the conceptualization, funding acquisition, and writing of the original draft; Tan JL took part in the conceptualization, funding acquisition, and review and editing of the manuscript; Feng Y, Huang LJ, and Zhang M participated in the provision of resources, and review and editing of the manuscript; Cheng B took part in the conceptualization and funding acquisition, and participated in the supervision, and writing, review, and editing of the manuscript; all authors have read and approved the final manuscript.
Supported by National Natural Science Foundation of China, No. 81873710 and No. 81900976; Guangzhou Foundation for Science and Technology Planning Project, China, No. 201704030083 and No. 201704020063; and Guangdong Financial Fund for High-Caliber Hospital Construction, No. 174-2018-XMZC-0001-03-0125/C-05.
Conflict-of-interest statement: The authors declare no conflict of interests for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Bin Cheng, DDS, PhD, Professor, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, Guangdong Province, China. chengbin@mail.sysu.edu.cn
Received: February 28, 2020
Peer-review started: February 28, 2020
First decision: April 25, 2020
Revised: May 17, 2020
Accepted: June 20, 2020
Article in press: June 20, 2020
Published online: August 26, 2020
Processing time: 179 Days and 16.5 Hours
Abstract

Mesenchymal stem cells (MSCs) have been widely exploited as promising candidates in clinical settings for bone repair and regeneration in view of their self-renewal capacity and multipotentiality. However, little is known about the mechanisms underlying their fate determination, which would illustrate their effectiveness in regenerative medicine. Recent evidence has shed light on a fundamental biological role of autophagy in the maintenance of the regenerative capability of MSCs and bone homeostasis. Autophagy has been implicated in provoking an immediately available cytoprotective mechanism in MSCs against stress, while dysfunction of autophagy impairs the function of MSCs, leading to imbalances of bone remodeling and a wide range of aging and degenerative bone diseases. This review aims to summarize the up-to-date knowledge about the effects of autophagy on MSC fate determination and its role as a stress adaptation response. Meanwhile, we highlight autophagy as a dynamic process and a double-edged sword to account for some discrepancies in the current research. We also discuss the contribution of autophagy to the regulation of bone cells and bone remodeling and emphasize its potential involvement in bone disease.

Keywords: Mesenchymal stem cells; Autophagy; Cell self-renewal; Cell differentiation; Cytoprotection; Bone remodeling

Core tip: Autophagy is a dynamic recycling mechanism that fuels cellular renovation and homeostasis. Recent studies have shed light on an essential role of autophagy in orchestrating self-renewal and the multilineage differentiation potential of mesenchymal stem cells (MSCs), thus coordinating bone homeostasis. This review outlines the effects of autophagy on MSCs fate determination and cytoprotection under different kinds of stresses. Moreover, we emphasize that the involvement of autophagy ensures balanced bone remodeling, which will be of significance in facilitating its application as a therapeutic target in bone repair and regeneration.