Review
Copyright ©The Author(s) 2022.
World J Gastroenterol. Mar 28, 2022; 28(12): 1204-1219
Published online Mar 28, 2022. doi: 10.3748/wjg.v28.i12.1204
Table 1 Gut microbiota functions
Bacterial phylum
Key representatives
Functions
FirmicutesMembers of the genera Enterococcus, Ruminococcus, Clostridium, Lactobacillus, Faecalibacterium, Roseburia, and EubacteriumMetabolism of amino acids[23,24], carbohydrates[25], bile acids, and their salts[22]. Lipid metabolism and cholesterol synthesis[25]. Synthesis of vitamins К2, B1, B2, B6, B7, B9, and B12[26]. Maintenance of a proper immune response[28,29] and intestinal epithelial barrier integrity[31,32]. Protection against enteric pathogens[33]
BacteroidetesMembers of the genera Bacteroides and PrevotellaMetabolism of amino acids[24], carbohydrates[25,141], bile acids, and their salts[22,142]. Synthesis of vitamin К2[27]. Regulation of appetite[143]. Maintenance of a proper immune response[28-29] and intestinal epithelial barrier integrity[31]. Protection against enteric pathogens[33]
ActinobacteriaMembers of the genera Bifidobacterium and CorynebacteriumMetabolism of bile acids and their salts[22]. Synthesis of vitamins К2, B1, B2, B6, B7, B9, and B12[26]. Protection against enteric pathogens[33]
ProteobacteriaMembers of the genera Desulfovibrio, Escherichia, and ShigellaMetabolism of amino acids[144]
Table 2 Compositional changes in gut microbiota in patients with irritable bowel syndrome (common threads)
Ref.
Subjects
Method
Specimen
Diversity
Faecalibacterium
Enterobacteriaceae
Bifidobacterium
Lactobacillus
Dior et al[145], 2016IBS-D (n = 16), IBS-C (n =15), Controls (n = 15)Real-time PCRStoolNo data↑ in IBS-D (Escherichia)↑ in IBS-C
Ringel-Kulka et al[108], 2016IBS (n = 56), Controls (n = 20)16S rRNAStoolNo data
Maharshak et al[102], 2018IBS-D (n = 23), Controls (n = 24)16S rRNA Stool1↑ (unclassified genus)
Colonic biopsy1
Gobert et al[146], 2016IBS-C (n = 33), Controls (n = 58)16S rRNAStoolNo data
Shukla et al[105], 2015IBS (n = 47), Controls (n = 30)16S rRNA; real-time PCRStoolNo data
Su et al[107], 2018IBS-D (n = 40), Controls (n = 20)16S rRNA; real-time PCRStoolNo data
Zhuang et al[109], 2018IBS-D (n = 30), Controls (n = 13)16S rRNA Stool2
Zhong et al[147], 2019IBS-D (n = 20), Controls (n = 16)FISHColonic biopsyNo data↑ (E. coli)
Jeffery et al[100], 2020IBS (n = 80), Controls (n = 65)16S rRNA, shotgun sequencingStool2
Rangel et al[148], 2015IBS (n = 33), Controls (n = 16)Microarray analysisStool2↓ (F. prausnitzii)
Colonic biopsy2
Table 3 Effects of antibiotics on gut microbiota composition (based on culture-independent approaches)
Ref.
Method
Antibiotic
Dosing regimen
Diversity
Compositional changes
Pallav et al[136], 2014PyrosequencingAmoxicillin250 mg 3 times daily for 7 d1,2↑ Escherichia, Shigella
Kabbani et al[137], 201716S rRNAAmoxicillin-Clavulanate875/125 mg twice daily for 7 d1,3↑ Escherichia, Parabacteroides, Enterobacter ↓ Roseburia
Burdet et al[120], 201916S rRNACeftriaxone1 g once daily for 3 d1,4↓ Firmicutes, Actinobacteria, Bacteroidetes
Raymond et al[135], 2016Shotgun sequencingCefprozil500 mg twice daily for 7 d5↑Flavonifractor, Lachnoclostridium, Parabacteroides, ↓Bifidobacteriaceae, Coriobacteriaceae, Eubacteriaceae, Oxalobacteraceae, Pasteurellaceae, Veillonellaceae
Rashid et al[121], 2015PyrosequencingCiprofloxacin500 mg twice daily for 10 d1↑ Bacteroides↓ Faecalibacterium, Alistipes, unculturable Ruminococcaceae
Clindamycin150 mg 4 times daily for 10 d1↓ Roseburia, Lachospira, Coprococcus, Dorea, Ruminococcus
Isaac et al[122], 201716S rRNAVancomycin250 mg per os 4 times daily for 2 wk1,4↑ Escherichia, Shigella, Klebsiella, Bacteroidetes, Faecalibacterium, Ruminococcus