Published online Mar 28, 2022. doi: 10.3748/wjg.v28.i12.1204
Peer-review started: August 24, 2021
First decision: November 7, 2021
Revised: December 1, 2021
Accepted: February 22, 2022
Article in press: February 22, 2022
Published online: March 28, 2022
Processing time: 212 Days and 13.8 Hours
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder in which recurrent abdominal pain is associated with defecation or a change in bowel habits (constipation, diarrhea, or both), and it is often accompanied by symptoms of abdominal bloating and distension. IBS is an important health care issue because it negatively affects the quality of life of patients and places a considerable financial burden on health care systems. Despite extensive research, the etiology and underlying pathophysiology of IBS remain incompletely understood. Proposed mechanisms involved in its pathogenesis include increased intestinal permeability, changes in the immune system, visceral hypersensitivity, impaired gut motility, and emotional disorders. Recently, accumulating evidence has highlighted the important role of the gut microbiota in the development of IBS. Microbial dysbiosis within the gut is thought to contribute to all aspects of its multifactorial pathogenesis. The last few decades have also seen an increasing interest in the impact of antibiotics on the gut microbiota. Moreover, antibiotics have been suggested to play a role in the development of IBS. Extensive research has established that antibacterial therapy induces remarkable shifts in the bacterial community composition that are quite similar to those observed in IBS. This suggestion is further supported by data from cohort and case-control studies, indicating that antibiotic treatment is associated with an increased risk of IBS. This paper summarizes the main findings on this issue and contributes to a deeper understanding of the link between antibiotic use and the development of IBS.
Core Tip: Irritable bowel syndrome (IBS) is among the most common gastrointestinal disorders; however, its etiology and underlying pathophysiology have yet to be fully elucidated. The present review focuses on the existing evidence on the pathogenic role of the gut microbiota in the development of IBS. Moreover, it provides a comprehensive review on the magnitude of changes in the gut microbiota in response to antibiotics. The paper contributes to a deeper understanding of the link between antibiotic use and the development of IBS.