Published online Jan 28, 2015. doi: 10.3748/wjg.v21.i4.1108
Peer-review started: June 20, 2014
First decision: July 21, 2014
Revised: August 1, 2014
Accepted: September 29, 2014
Article in press: September 30, 2014
Published online: January 28, 2015
Processing time: 221 Days and 15.4 Hours
AIM: To study at what temperature the oxygen carried by the perfusate meets liver requirements in a model of organ perfusion.
METHODS: In this study, we correlated hypoxia inducible factor (HIF)-1α expression to the perfusion temperature and the hepatic oxygen uptake in a model of isolated perfused rat liver. Livers from Wistar rats were perfused for 6 h with an oxygenated medium at 10, 20, 30 and 37 °C. Oxygen uptake was measured by an oxygen probe; lactate dehydrogenase activity, lactate release and glycogen were measured spectrophotometrically; bile flow was gravitationally determined; pH of the perfusate was also evaluated; HIF-1α mRNA and protein expression were analyzed by real time-polymerase chain reaction and ELISA, respectively.
RESULTS: Livers perfused at 10 and 20 °C showed no difference in lactate dehydrogenase release after 6 h of perfusion (0.96 ± 0.23 vs 0.93 ± 0.09 mU/min per g) and had lower hepatic damage as compared to 30 and 37 °C (5.63 ± 0.76 vs 527.69 ± 45.27 mU/min per g, respectively, Ps < 0.01). After 6 h, tissue ATP was significantly higher in livers perfused at 10 and 20 °C than in livers perfused at 30 and 37 °C (0.89 ± 0.06 and 1.16 ± 0.05 vs 0.57 ± 0.09 and 0.33 ± 0.08 nmol/mg, respectively, Ps < 0.01). No sign of hypoxia was observed at 10 and 20 °C, as highlighted by low lactate release respect to livers perfused at 30 and 37 °C (121.4 ± 12.6 and 146.3 ± 7.3 vs 281.8 ± 45.3 and 1094.5 ± 71.7 nmol/mL, respectively, Ps < 0.02), and low relative HIF-1α mRNA (0.40 ± 0.08 and 0.20 ± 0.03 vs 0.60 ± 0.20 and 1.47 ± 0.30, respectively, Ps < 0.05) and protein (3.72 ± 0.16 and 3.65 ± 0.06 vs 4.43 ± 0.41 and 6.44 ± 0.82, respectively, Ps < 0.05) expression.
CONCLUSION: Livers perfused at 10 and 20 °C show no sign of liver injury or anaerobiosis, in contrast to livers perfused at 30 and 37 °C.
Core tip: Among the techniques developed to improve the preservation of marginal organs for transplantation, hypothermic perfusion is the preferred choice. We show that it is possible to perfuse a rat liver at 20 °C without incurring ischemia. We evaluated liver injury, energetic status, lactate release, and hypoxia inducible factor-1α expression. Results show that symptoms of ischemia appear at temperatures > 20 °C, whereas there is no detectable advantage below 20 °C. These findings have interesting implications in liver preservation; maintaining the liver in a mild metabolic state could be useful for pharmacologic treatment and regeneration of the energetic status in ATP-depleted organs.