Minireviews
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
Artif Intell Gastroenterol. Aug 28, 2021; 2(4): 94-104
Published online Aug 28, 2021. doi: 10.35712/aig.v2.i4.94
Clinical use of augmented reality, mixed reality, three-dimensional-navigation and artificial intelligence in liver surgery
Roger Wahba, Michael N Thomas, Alexander C Bunck, Christiane J Bruns, Dirk L Stippel
Roger Wahba, Michael N Thomas, Christiane J Bruns, Dirk L Stippel, Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50937, Germany
Alexander C Bunck, Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne 50937, Germany
Author contributions: Wahba R and Stippel DL designed the research study, performed the research; analyzed the data and wrote the manuscript; have read and approved the final manuscript; Thomas MN performed the research, wrote the manuscript; have read and approved the final manuscript; Bunck AC analyzed the data and wrote the manuscript; have read and approved the final manuscript; Bruns CJ designed the research study, has read and approved the final manuscript.
Conflict-of-interest statement: There is no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Roger Wahba, MD, PhD, FEBS, Assistant Professor, Surgeon, Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany. roger.wahba@uk-koeln.de
Received: April 9, 2021
Peer-review started: April 9, 2021
First decision: July 3, 2021
Revised: July 10, 2021
Accepted: August 27, 2021
Article in press: August 27, 2021
Published online: August 28, 2021
Abstract

A precise knowledge of intra-parenchymal vascular and biliary architecture and the location of lesions in relation to the complex anatomy is indispensable to perform liver surgery. Therefore, virtual three-dimensional (3D)-reconstruction models from computed tomography/magnetic resonance imaging scans of the liver might be helpful for visualization. Augmented reality, mixed reality and 3D-navigation could transfer such 3D-image data directly into the operation theater to support the surgeon. This review examines the literature about the clinical and intraoperative use of these image guidance techniques in liver surgery and provides the reader with the opportunity to learn about these techniques. Augmented reality and mixed reality have been shown to be feasible for the use in open and minimally invasive liver surgery. 3D-navigation facilitated targeting of intraparenchymal lesions. The existing data is limited to small cohorts and description about technical details e.g., accordance between the virtual 3D-model and the real liver anatomy. Randomized controlled trials regarding clinical data or oncological outcome are not available. Up to now there is no intraoperative application of artificial intelligence in liver surgery. The usability of all these sophisticated image guidance tools has still not reached the grade of immersion which would be necessary for a widespread use in the daily surgical routine. Although there are many challenges, augmented reality, mixed reality, 3D-navigation and artificial intelligence are emerging fields in hepato-biliary surgery.

Keywords: Augmented reality, Mixed reality, 3D, Navigation, Artificial intelligence, Liver surgery, Liver resection, Image guided surgery

Core Tip: Virtual three-dimensional (3D)-reconstruction models from computed tomography/magnetic resonance imaging scans of the liver might be helpful for visualization during liver surgery. Augmented reality, mixed reality and 3D-navigation could transfer such 3D-image data directly into the operation theater. Augmented reality and mixed reality have been shown to be feasible for the use in open and in minimally invasive liver surgery. 3D-navigation facilitated targeting of intraparenchymal lesions. Randomized controlled trials regarding clinical data or oncological outcome are not available. Up to now there is no intraoperative application of artificial intelligence in liver surgery. The usability of all these sophisticated image guidance tools has still not reached the grade of immersion which would be necessary for a widespread use in the daily surgical routine.