Li X, Xia WY, Jiang F, Liu DY, Lei SQ, Xia ZY, Wu QP. Review of the risk factors for SARS-CoV-2 transmission. World J Clin Cases 2021; 9(7): 1499-1512 [PMID: 33728294 DOI: 10.12998/wjcc.v9.i7.1499]
Corresponding Author of This Article
Qing-Ping Wu, MD, PhD, Professor, Department of Anaesthesiology, Institute of Anaesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China. wqp1968@163.com
Research Domain of This Article
Infectious Diseases
Article-Type of This Article
Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Clin Cases. Mar 6, 2021; 9(7): 1499-1512 Published online Mar 6, 2021. doi: 10.12998/wjcc.v9.i7.1499
Table 1 Public health emergency of international concern announced by the World Health Organization
Public health PHEIC announced by WHO
H1N1 influenza pandemic in 2009
Polio eradication in 2014
Ebola virus outbreak in West Africa in 2014
Zika virus outbreaks in 2016
Ebola outbreak in the Democratic Republic of Congo in 2018
SARS-CoV-2 outbreak in 2020
Table 2 Survival of severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2 on various materials
Viable SARS-CoV-2 detected after 3 h in aerosols, no viable SARS-CoV-2 detected after 4 h on copper and 24 h on cardboard, stable after 72 h on plastic and stainless steel; no viable SARS-CoV detected after 8 h on copper and 8 h on cardboard
The viability of MERS-CoV decreased 7% at 40% RH and 89% at 70% RH in aerosols; Viable MERS-CoV tested after 48 h at 20 °C/40% RH, 8 h at 30 °C/80% RH and 24 h at 30 °C/30% RH
SARS-CoV survived for 5 d at 22-25 °C relative humidity of 40%-50% with only 1 log10 loss of titer and was viable for more than 20 d; SARS-CoV was more stable at relatively low temperatures (28 °C vs 38 °C) and humidity (80%-89% vs > 95%)
SARS-CoV survived for more than 6 d and retained its infectivity for up to 9 d
SARS-CoV survived no more than 5 min to 24 h on paper, 1 h to 2 d on disposable clothing, and 5 min to 24 h on cotton clothing
SARS-CoV survived for > 72 h on the surfaces of eight materials, and > 120 h on metal, cloth and filter paper
Reduction in infectious titer (TCID50)
SARS-CoV-2: from 103.5 to 102.7 in aerosols, from 103.7 to 100.6 after 72 h on plastic, from 103.7 to 100.6 after 48 h on stainless steel; SARS-CoV: from 104.3 to 103.5 in aerosols, from 103.4 to 100.7 after 72 h on plastic, from 103.6 to 100.6 after 48 h on stainless steel
NA
The reduction in infectious titer was similar in solution compared with virus dried on surfaces
NA
NA
NA
Half-life
SARS-CoV-2 :1.1 h in aerosols, 6.8 h on plastic, 5.6 h on stainless steel, 0.8 h on copper, 3.5 h on cardboard; SARS-CoV :1.2 h in aerosols, 7.6 h on plastic, 4.2 h on stainless steel, 1.5 h on copper, 0.6 h on cardboard
The half-life of MERS-CoV ranged from 0.6 to 1 h on steel and from 0.4 to 1 h on plastic
NA
NA
NA
NA
Table 3 Measures to prevent the transmission of severe acute respiratory syndrome coronavirus 2
Measures to prevent SARS-CoV-2 transmission
Strengthen the environmental hygiene of the medical sector and the personal hygiene of medical staff
Standardize the management procedures for confirmed and suspected cases to reduce nosocomial transmission
Equip health-care workers with PPE to protect their safety
Strictly assess hospitalization criteria and limit nonessential visits
Increase public awareness and education on infectious diseases and measures to prevent the spread of diseases on an individual basis
Enhance supervision and management of the flow of people in public places to reduce large-scale gatherings
Table 4 Unanswered questions about severe acute respiratory syndrome coronavirus 2
Unanswered questions about SARS-CoV-2
Where does SARS-CoV-2 really originated from and how does it affect humans?
Will the spread of SARS-CoV-2 be a seasonal outbreak?
Why is the prevalence of SARS-CoV-2 infection lower in children than in adults?
Is the infectivity of a patient positively related to the severity of the disease?
What is the proportion of asymptomatic carriers worldwide and what role do they play in transmission?
What is the probability that a cured patient is re-infected with SARS-CoV-2?
How does SARS-CoV-2 invade other organs than the lung?
Can animal experiments find out the specific pathogenesis of SARS-CoV-2 infection?
How long will it take to develop effective vaccine or medicine against SARS-CoV-2?
Citation: Li X, Xia WY, Jiang F, Liu DY, Lei SQ, Xia ZY, Wu QP. Review of the risk factors for SARS-CoV-2 transmission. World J Clin Cases 2021; 9(7): 1499-1512