Copyright
©The Author(s) 2020.
World J Clin Cases. Nov 6, 2020; 8(21): 5203-5212
Published online Nov 6, 2020. doi: 10.12998/wjcc.v8.i21.5203
Published online Nov 6, 2020. doi: 10.12998/wjcc.v8.i21.5203
Table 1 Discriminative performance of peritumoral tissues with different radial dilation distances on lung cancer and pulmonary tuberculosis
Dilations | Cohorts | AUC | Specificity | Sensitivity |
0.0 mm | Training cohort | 0.875 | 0.761 | 0.846 |
Validation cohort | 0.832 | 0.791 | 0.769 | |
1.0 mm | Training cohort | 0.875 | 0.791 | 0.819 |
Validation cohort | 0.797 | 0.884 | 0.635 | |
2.0 mm | Training cohort | 0.889 | 0.751 | 0.879 |
Validation cohort | 0.810 | 0.907 | 0.635 | |
3.0 mm | Training cohort | 0.900 | 0.811 | 0.846 |
Validation cohort | 0.865 | 0.907 | 0.635 | |
4.0 mm | Training cohort | 0.914 | 0.796 | 0.890 |
Validation cohort | 0.900 | 0.907 | 0.788 | |
5.0 mm | Training cohort | 0.888 | 0.818 | 0.816 |
Validation cohort | 0.779 | 0.652 | 0.837 | |
6.0 mm | Training cohort | 0.899 | 0.843 | 0.810 |
Validation cohort | 0.823 | 0.804 | 0.775 | |
7.0 mm | Training cohort | 0.897 | 0.854 | 0.800 |
Validation cohort | 0.819 | 0.630 | 0.939 | |
8.0 mm | Training cohort | 0.906 | 0.737 | 0.924 |
Validation cohort | 0.840 | 0.739 | 0.837 | |
9.0 mm | Training cohort | 0.904 | 0.737 | 0.930 |
Validation cohort | 0.836 | 0.739 | 0.837 | |
10.0 mm | Training cohort | 0.906 | 0.727 | 0.935 |
Validation cohort | 0.836 | 0.739 | 0.837 |
Table 2 The eight radiomics features selected from the lung computed tomography images
Radiomics features | Cohorts | AUC | P value |
Lbp-2D_firstorder_Entropy | Training cohort | 0.627 | 0.000 |
Validation cohort | 0.618 | 0.033 | |
Lbp-3D-k_firstorder_10Percentile | Training cohort | 0.633 | 0.022 |
Validation cohort | 0.568 | 0.026 | |
Log-sigma-3-0-mm-3D_glcm_Idn | Training cohort | 0.557 | 0.359 |
Validation cohort | 0.527 | 0.344 | |
Log-sigma-5-0-mm-3D_glrlm_RunLengthNonUniformity | Training cohort | 0.559 | 0.010 |
Validation cohort | 0.576 | 0.329 | |
Squareroot_gldm_DependenceNonUniformity | Training cohort | 0.550 | 0.006 |
Validation cohort | 0.581 | 0.404 | |
Wavelet-HLH_glcm_Idn | Training cohort | 0.562 | 0.086 |
Validation cohort | 0.551 | 0.304 | |
Wavelet-HLL_glcm_Idn | Training cohort | 0.547 | 0.160 |
Validation cohort | 0.542 | 0.435 | |
Wavelet-LLL_glcm_Idmn | Training cohort | 0.658 | 0.000 |
Validation cohort | 0.663 | 0.008 |
- Citation: Cui EN, Yu T, Shang SJ, Wang XY, Jin YL, Dong Y, Zhao H, Luo YH, Jiang XR. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World J Clin Cases 2020; 8(21): 5203-5212
- URL: https://www.wjgnet.com/2307-8960/full/v8/i21/5203.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v8.i21.5203