Chen CH, Wang CK, Wang CY, Chang CF, Chu TW. Roles of biochemistry data, lifestyle, and inflammation in identifying abnormal renal function in old Chinese. World J Clin Cases 2023; 11(29): 7004-7016 [PMID: 37946770 DOI: 10.12998/wjcc.v11.i29.7004]
Corresponding Author of This Article
Ta-Wei Chu, MD, PhD, CEO, Chief Physician, Doctor, Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, No. 325 Sec. 2, Chenggong Road, Neihu District, Taipei 114, Taiwan. david_chu@mjlife.com
Research Domain of This Article
Urology & Nephrology
Article-Type of This Article
Retrospective Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Table 3 Results of five different machine learning methods in three different models
Model
Methods
Accuracy
Sensitivity
Specificity
AUC
F1-score
BA
Model 1
MARS
0.689
0.717
0.519
0.633
0.799
0.618
XGboost
0.715
0.753
0.482
0.602
0.820
0.617
SGB
0.596
0.590
0.630
0.599
0.715
0.610
LightGBM
0.731
0.771
0.482
0.615
0.831
0.626
Catboost
0.549
0.518
0.741
0.623
0.664
0.629
Model 2
MARS
0.689
0.683
0.731
0.693
0.792
0.707
XGboost
0.632
0.617
0.731
0.663
0.744
0.674
SGB
0.762
0.802
0.500
0.666
0.854
0.651
LightGBM
0.767
0.808
0.500
0.646
0.857
0.654
Catboost
0.637
0.635
0.654
0.663
0.752
0.644
Model 3
MARS
0.767
0.801
0.622
0.760
0.848
0.711
XGboost
0.762
0.763
0.757
0.786
0.838
0.760
SGB
0.777
0.789
0.730
0.814
0.851
0.759
LightGBM
0.741
0.750
0.703
0.776
0.824
0.726
Catboost
0.819
0.897
0.487
0.744
0.889
0.692
Table 4 Area under receiver operating characteristic curve derived from five different machine learning methods of the three different models
Model/AUC
Model 1
Model 2
Model 3
MARS
0.633
0.693
0.760
XGboost
0.602
0.663
0.786
SGB
0.599
0.666
0.814
LightGBM
0.615
0.646
0.776
Catboost
0.623
0.663
0.744
Mean
0.6144
0.6662
0.776
Table 5 Rank importance of risk factors in model 1, from the most important to the least
Variable
MARS
XGboost
SGB
LightGBM
Catboost
AVG
Uric acid
1
1
1
1
1
1
Age
1
2
2
2
2
1.8
Body mass index
11
3
8
4
3
5.8
HDL-cholesterol
11
4
4
9
5
6.6
Systolic blood pressure
11
6
5
5
7
6.8
Serum glutamic pyruvic transaminase
4
9
7
10
4
6.8
Fasting plasma glucose
5
10
10
3
9
7.4
Diastolic blood pressure
11
5
6
8
8
7.6
Gender
3
8
11
7
10
7.8
Triglyceride
11
11
3
6
11
8.4
Serum glutamic oxaloacetic transaminase
11
7
9
11
6
8.8
Table 6 Rank importance of risk factors in model 2, from the most important to the least
Variable
MARS
XGboost
SGB
LightGBM
Catboos
AVG
Uric acid
1
1
1
1
1
1
Age
2
2
2
4
2
2.4
Body mass index
2
5
2
2
3
2.8
Triglyceride
7
4
5
1
5
4.4
Diastolic blood pressure
3
7
3
9
2
4.8
Sport hours
4
6
6
10
4
6
Systolic blood pressure
14
1
4
3
11
6.6
Serum glutamic oxaloacetic transaminase
6
8
8
5
9
7.2
HDL-cholesterol
14
3
7
8
6
7.6
Fasting plasma glucose
14
10
10
6
10
10
Drinking
5
12
12
14
8
10.2
Sleep time
14
9
9
14
7
10.6
Serum glutamic pyruvic transaminase
14
11
11
7
13
11.2
Gender
14
13
14
14
12
13.4
Smoking
14
14
14
14
14
14
Table 7 Rank importance of risk factors in model 3, from the most important to the least
Variable
MARS
XGboost
SGB
LightGBM
Catboost
AVG
Uric acid
1
1
1
1
1
1
Age
1
2
2
2
4
2.2
Hemoglobin
4
4
6
3
3
4
Body mass index
7
3
3
7
2
4.4
Sport hours
3
8
4
5
13
6.6
Systolic blood pressure
5
6
20
4
5
8
Diastolic blood pressure
20
5
5
6
14
10
Alkaline phosphatase
20
7
11
12
10
12
γ-glutamyl transferase
20
13
8
9
12
12.4
Hs-C reactive protein
9
12
10
15
17
12.6
Fasting plasma glucose
20
9
20
10
7
13.2
Serum glutamic oxaloacetic transaminase
20
18
7
13
8
13.2
HDL-cholesterol
20
10
13
8
15
13.2
Drinking
20
14
12
16
6
13.6
White blood cell count
8
11
20
11
18
13.6
Sleep time
6
17
20
18
11
14.4
Serum glutamic pyruvic transaminase
20
16
14
14
9
14.6
Triglyceride
20
15
9
17
16
15.4
Gender
20
20
20
20
19
19.8
Smoking
20
20
20
20
20
20
Citation: Chen CH, Wang CK, Wang CY, Chang CF, Chu TW. Roles of biochemistry data, lifestyle, and inflammation in identifying abnormal renal function in old Chinese. World J Clin Cases 2023; 11(29): 7004-7016