Copyright
©The Author(s) 2023.
World J Clin Cases. Oct 16, 2023; 11(29): 7004-7016
Published online Oct 16, 2023. doi: 10.12998/wjcc.v11.i29.7004
Published online Oct 16, 2023. doi: 10.12998/wjcc.v11.i29.7004
Table 1 Demographic, biochemistry, and lifestyle information of the participants
Low eGFR | High eGFR | |
Number | 180 | 1056 |
Age (yr) | 72.1 ± 5.9 | 69.5 ± 4.6c |
Sleep time (h) | 5.89 ± 1.10 | 6.1 ± 1.15a |
Drinking duration | 4.76 ± 4.37 | 5.25 ± 5.74 |
Sport hours | 205.6 ± 36.2 | 204.4 ± 36.3 |
Body mass index (kg/m2) | 23.9 ± 3.4 | 23.7 ± 3.2 |
White blood cell count (103/μL) | 5.94 ± 1.75 | 5.58 ± 1.40b |
Hemoglobin (g/dL) | 13.8 ± 1.5 | 14.0 ± 1.3 |
Fasting plasma glucose (mg/dL) | 108.2 ± 19.3 | 108.2 ± 21.5 |
Alkaline phosphatase (IU/L) | 67.8 ± 19.2 | 66.6 ± 22.2 |
Serum glutamic oxaloacetic transaminase (IU/L) | 27.3 ± 11.3 | 26.0 ± 12.8 |
Serum glutamic pyruvic transaminase (IU/L) | 25.4 ± 14.7 | 25.8 ± 19.2 |
γ-glutamyltransferase (IU/L) | 28.5 ± 28.7 | 27.1 ± 35.5 |
Systolic blood pressure (mmHg) | 131.2 ± 18.9 | 127.4 ± 18.1b |
Diastolic blood pressure (mmHg) | 75.6 ± 11.2 | 74.6 ± 10.6 |
Triglyceride (mg/dL) | 121.4 ± 71.4 | 114.5 ± 67.3 |
High density lipoprotein cholesterol (mg/dL) | 57.4 ± 14.3 | 59.6 ± 16.0 |
Uric acid (mg/dL) | 6.53 ± 1.48 | 5.56 ± 1.3 |
High sensitivity C-reactive protein (mg/L) | 2.52 ± 5.08 | 2.11 ± 4.35c |
eGFR | 74.8 ± 10.1 | 53.02 ± 6.8 |
Table 2 Variables contained in three models
Model 1 | Model 2 | Model 3 | |
Age | √ | √ | √ |
Body mass index | √ | √ | √ |
Systolic blood pressure | √ | √ | √ |
Diastolic blood pressure | √ | √ | √ |
Fasting plasma glucose | √ | √ | √ |
Serum glutamic oxaloacetic transaminase | √ | √ | √ |
Serum glutamic pyruvic transaminase | √ | √ | √ |
Uric acid | √ | √ | √ |
High density lipoprotein cholesterol | √ | √ | √ |
High sensitivity C-reactive protein | √ | √ | √ |
Triglyceride | √ | √ | √ |
Estimated glomerular filtration rate | √ | √ | √ |
Sleep time | √ | √ | |
Drinking duration | √ | √ | |
Sport hours | √ | √ | |
White blood cell count | √ | ||
Hemoglobin | √ | ||
Alkaline phosphatase | √ | ||
γ-glutamyltransferase | √ | ||
High sensitivity C-reactive protein | √ |
Table 3 Results of five different machine learning methods in three different models
Model | Methods | Accuracy | Sensitivity | Specificity | AUC | F1-score | BA |
Model 1 | MARS | 0.689 | 0.717 | 0.519 | 0.633 | 0.799 | 0.618 |
XGboost | 0.715 | 0.753 | 0.482 | 0.602 | 0.820 | 0.617 | |
SGB | 0.596 | 0.590 | 0.630 | 0.599 | 0.715 | 0.610 | |
LightGBM | 0.731 | 0.771 | 0.482 | 0.615 | 0.831 | 0.626 | |
Catboost | 0.549 | 0.518 | 0.741 | 0.623 | 0.664 | 0.629 | |
Model 2 | MARS | 0.689 | 0.683 | 0.731 | 0.693 | 0.792 | 0.707 |
XGboost | 0.632 | 0.617 | 0.731 | 0.663 | 0.744 | 0.674 | |
SGB | 0.762 | 0.802 | 0.500 | 0.666 | 0.854 | 0.651 | |
LightGBM | 0.767 | 0.808 | 0.500 | 0.646 | 0.857 | 0.654 | |
Catboost | 0.637 | 0.635 | 0.654 | 0.663 | 0.752 | 0.644 | |
Model 3 | MARS | 0.767 | 0.801 | 0.622 | 0.760 | 0.848 | 0.711 |
XGboost | 0.762 | 0.763 | 0.757 | 0.786 | 0.838 | 0.760 | |
SGB | 0.777 | 0.789 | 0.730 | 0.814 | 0.851 | 0.759 | |
LightGBM | 0.741 | 0.750 | 0.703 | 0.776 | 0.824 | 0.726 | |
Catboost | 0.819 | 0.897 | 0.487 | 0.744 | 0.889 | 0.692 |
Table 4 Area under receiver operating characteristic curve derived from five different machine learning methods of the three different models
Model/AUC | Model 1 | Model 2 | Model 3 |
MARS | 0.633 | 0.693 | 0.760 |
XGboost | 0.602 | 0.663 | 0.786 |
SGB | 0.599 | 0.666 | 0.814 |
LightGBM | 0.615 | 0.646 | 0.776 |
Catboost | 0.623 | 0.663 | 0.744 |
Mean | 0.6144 | 0.6662 | 0.776 |
Table 5 Rank importance of risk factors in model 1, from the most important to the least
Variable | MARS | XGboost | SGB | LightGBM | Catboost | AVG |
Uric acid | 1 | 1 | 1 | 1 | 1 | 1 |
Age | 1 | 2 | 2 | 2 | 2 | 1.8 |
Body mass index | 11 | 3 | 8 | 4 | 3 | 5.8 |
HDL-cholesterol | 11 | 4 | 4 | 9 | 5 | 6.6 |
Systolic blood pressure | 11 | 6 | 5 | 5 | 7 | 6.8 |
Serum glutamic pyruvic transaminase | 4 | 9 | 7 | 10 | 4 | 6.8 |
Fasting plasma glucose | 5 | 10 | 10 | 3 | 9 | 7.4 |
Diastolic blood pressure | 11 | 5 | 6 | 8 | 8 | 7.6 |
Gender | 3 | 8 | 11 | 7 | 10 | 7.8 |
Triglyceride | 11 | 11 | 3 | 6 | 11 | 8.4 |
Serum glutamic oxaloacetic transaminase | 11 | 7 | 9 | 11 | 6 | 8.8 |
Table 6 Rank importance of risk factors in model 2, from the most important to the least
Variable | MARS | XGboost | SGB | LightGBM | Catboos | AVG |
Uric acid | 1 | 1 | 1 | 1 | 1 | 1 |
Age | 2 | 2 | 2 | 4 | 2 | 2.4 |
Body mass index | 2 | 5 | 2 | 2 | 3 | 2.8 |
Triglyceride | 7 | 4 | 5 | 1 | 5 | 4.4 |
Diastolic blood pressure | 3 | 7 | 3 | 9 | 2 | 4.8 |
Sport hours | 4 | 6 | 6 | 10 | 4 | 6 |
Systolic blood pressure | 14 | 1 | 4 | 3 | 11 | 6.6 |
Serum glutamic oxaloacetic transaminase | 6 | 8 | 8 | 5 | 9 | 7.2 |
HDL-cholesterol | 14 | 3 | 7 | 8 | 6 | 7.6 |
Fasting plasma glucose | 14 | 10 | 10 | 6 | 10 | 10 |
Drinking | 5 | 12 | 12 | 14 | 8 | 10.2 |
Sleep time | 14 | 9 | 9 | 14 | 7 | 10.6 |
Serum glutamic pyruvic transaminase | 14 | 11 | 11 | 7 | 13 | 11.2 |
Gender | 14 | 13 | 14 | 14 | 12 | 13.4 |
Smoking | 14 | 14 | 14 | 14 | 14 | 14 |
Table 7 Rank importance of risk factors in model 3, from the most important to the least
Variable | MARS | XGboost | SGB | LightGBM | Catboost | AVG |
Uric acid | 1 | 1 | 1 | 1 | 1 | 1 |
Age | 1 | 2 | 2 | 2 | 4 | 2.2 |
Hemoglobin | 4 | 4 | 6 | 3 | 3 | 4 |
Body mass index | 7 | 3 | 3 | 7 | 2 | 4.4 |
Sport hours | 3 | 8 | 4 | 5 | 13 | 6.6 |
Systolic blood pressure | 5 | 6 | 20 | 4 | 5 | 8 |
Diastolic blood pressure | 20 | 5 | 5 | 6 | 14 | 10 |
Alkaline phosphatase | 20 | 7 | 11 | 12 | 10 | 12 |
γ-glutamyl transferase | 20 | 13 | 8 | 9 | 12 | 12.4 |
Hs-C reactive protein | 9 | 12 | 10 | 15 | 17 | 12.6 |
Fasting plasma glucose | 20 | 9 | 20 | 10 | 7 | 13.2 |
Serum glutamic oxaloacetic transaminase | 20 | 18 | 7 | 13 | 8 | 13.2 |
HDL-cholesterol | 20 | 10 | 13 | 8 | 15 | 13.2 |
Drinking | 20 | 14 | 12 | 16 | 6 | 13.6 |
White blood cell count | 8 | 11 | 20 | 11 | 18 | 13.6 |
Sleep time | 6 | 17 | 20 | 18 | 11 | 14.4 |
Serum glutamic pyruvic transaminase | 20 | 16 | 14 | 14 | 9 | 14.6 |
Triglyceride | 20 | 15 | 9 | 17 | 16 | 15.4 |
Gender | 20 | 20 | 20 | 20 | 19 | 19.8 |
Smoking | 20 | 20 | 20 | 20 | 20 | 20 |
- Citation: Chen CH, Wang CK, Wang CY, Chang CF, Chu TW. Roles of biochemistry data, lifestyle, and inflammation in identifying abnormal renal function in old Chinese. World J Clin Cases 2023; 11(29): 7004-7016
- URL: https://www.wjgnet.com/2307-8960/full/v11/i29/7004.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v11.i29.7004