Copyright
©The Author(s) 2022.
World J Clin Cases. Nov 16, 2022; 10(32): 11690-11701
Published online Nov 16, 2022. doi: 10.12998/wjcc.v10.i32.11690
Published online Nov 16, 2022. doi: 10.12998/wjcc.v10.i32.11690
USPs | Expression | Potential role in breast cancer | Signal pathway |
USP1 | Upregulated | Tumor promoter | KPNA2, ERα signaling, Hippo signaling pathway, TGF-β signaling[20-23] |
USP4 | Upregulated | Tumor suppressor | PDCD4, circBMPR2, PAK5-DNPEP pathway, Relaxin/TGF-β1/Smad2/MMP-9 signaling, TGF-β signaling[24-28] |
USP7 | Upregulated | Tumor promoter | PHF8,DNA repair, Aurora-A kinase, ECT2[29-34] |
USP9X | Upregulated | Tumor promoter, Tumor suppressor | CEP131, Hippo Pathway, Notch signaling, Cyclin D1,Wnt signaling, TRAIL, YAP1[35,37,38,40,41,45,46] |
USP11 | Upregulated | Tumor promoter | TGFβ signaling, DNA damage, XIAP[47-49] |
USP14 | Upregulated | Tumor promoter | CyclinB1, Wnt/β-catenin and PI3K/AKT pathways, cell cycle[53,54] |
USP15 | Upregulated | Tumor promoter | DNA repair, ERα signaling[65,66] |
USP18 | Upregulated | Tumor promoter | AKT/Skp2 pathway[68] |
USP20 | Upregulated | Tumor promoter | SNAI2[69] |
USP22 | Upregulated | Tumor promoter | c-Myc, Hh pathway[57,58] |
USP28 | Upregulated | Tumor suppressor | HIF-independent pathway, LSD1[71,72] |
USP32 | Upregulated | Tumor promoter | Unknown[73] |
USP33 | Upregulated | Tumor suppressor | Slit-Robo signaling[74] |
USP37 | Upregulated | Tumor promoter | Stemness, epithelial-mesenchymal transition[60] |
USP39 | Upregulated | Tumor promoter | G0/G1-phase arrest, CHEK2[62,63] |
Target | Breast cancer subtype | Experiment | Pathways | |
USP1 | Pimozide | ER negative BC, TNBC | In vitro; In vivo | Cell cycle, AKT signaling pathway, EMT, MMP-9, vimentin, STAT3[76,78,79] |
Trifluoperazin | TNBC | In vitro; In vivo | G0/G1 arrest, cyclinD1/CDK4, cyclinE/CDK2[80] | |
Rottlerin | ER positive BC, TNBC, CSCs | In vitro | NFκB, cyclin D-1, p38 MAPK, AMPK, proteasome inhibition, Skp2[81-84] | |
ML323 | BC | In vitro; In vivo | KPNA2[20] | |
USP2 | 6-TG | BRCA2-defective PARP inhibitor-resistant BC, BRCA1-mutant BC, TNBC | In vitro; In vivo | DNA repair, PI3K-AKT, apoptosis pathway, lncRNA-miRNA-mRNA ceRNA network, DNMT1[85,87,88,90] |
ML364 | ER-positive BC | In vitro | Endocytic degradation[91] | |
USP7 | Costunolide | metastatic TNBC, BC | In vitro | NF-κB signaling, cell cycle regulation, c-Myc/p53, AKT/14-3-3 pathway, p38MAPK pathways[92-95] |
USP7/47 | P5091 | BC | In vitro | EMT[96] |
USP14 | b-AP15 | ER positive BC, TNBC | In vitro; In vivo | Autophagy, ERα signaling[98,99] |
IU1 | AR-positive BC | In vitro; In vivo | Wnt/β-catenin, PI3K/AKT pathways[55] | |
Auranofin | ER positive BC, TNBC | In vitro; In vivo | PTGR1 expression, ERK1/2-MYC, p38 MAPK signaling pathway, mitochondrial apoptosis[100-102] | |
USP9x | WP1130 | ER-negative BC | In vitro | Mcl-1[43] |
- Citation: Huang ML, Shen GT, Li NL. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J Clin Cases 2022; 10(32): 11690-11701
- URL: https://www.wjgnet.com/2307-8960/full/v10/i32/11690.htm
- DOI: https://dx.doi.org/10.12998/wjcc.v10.i32.11690