Retrospective Study
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Cases. Dec 6, 2021; 9(34): 10494-10506
Published online Dec 6, 2021. doi: 10.12998/wjcc.v9.i34.10494
Thoracoscopic segmentectomy and lobectomy assisted by three-dimensional computed-tomography bronchography and angiography for the treatment of primary lung cancer
Yun-Jiang Wu, Qing-Tong Shi, Yong Zhang, Ya-Li Wang
Yun-Jiang Wu, Qing-Tong Shi, Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
Yong Zhang, Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
Ya-Li Wang, Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
Author contributions: Wu YJ and Wang YL analyzed and interpreted the data and wrote the article; Zhang Y and Wang YL drafted the work and collected the data; Wu YJ and Qing TS designed the study and revised the article for important intellectual content.
Supported by National Natural Science Foundation of China, No. 81800050; Natural Science Fund of Yangzhou City, No. YZ2017119; and Science and Technology Innovation Cultivation Program of Yangzhou University, No. 2017CXJ122.
Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the Affiliated Hospital of Yangzhou University.
Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.
Conflict-of-interest statement: All authors declare no conflicts of interest related to this article.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ya-Li Wang, MA, MD, Attending Doctor, Chief Doctor, Doctor, Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Minhang District, Shanghai 200127, China. wyl1586135@126.com
Received: February 15, 2021
Peer-review started: February 15, 2021
First decision: July 16, 2021
Revised: July 20, 2021
Accepted: September 14, 2021
Article in press: September 14, 2021
Published online: December 6, 2021
Abstract
BACKGROUND

Anatomical segmentectomy has been proposed as a substitution for lobectomy for early-stage lung cancer. However, it requires technical meticulousness due to the complex anatomical variations of segmental vessels and bronchi.

AIM

To assess the safety and feasibility of three-dimensional computed-tomography bronchography and angiography (3D-CTBA) in performing video-assisted thoracoscopic surgery (VATS) for lung cancers.

METHODS

In this study, we enrolled 123 patients who consented to undergo thoracoscopic segmentectomy and lobectomy assisted by 3D-CTBA between May 2017 and June 2019. The image data of enhanced computed tomography (CT) scans was reconstructed three-dimensionally by the Mimics software. The results of preoperative 3D-CTBA, in combination with intraoperative navigation, guided the surgery.

RESULTS

A total of 59 women and 64 men were enrolled, of whom 57 (46.3%) underwent segmentectomy and 66 (53.7%) underwent lobectomy. The majority of tumor appearance on CT was part-solid ground-glass nodule (pGGN; 55.3%). The mean duration of chest tube placement was 3.5 ± 1.6 d, and the average length of postoperative hospital stay was 6.8 ± 1.8 d. Surgical complications included one case of pneumonia and four cases of prolonged air leak lasting > 5 d. Notably, there was no intraoperative massive hemorrhage, postoperative intensive-care unit stay, or 30-d mortality. Preoperative 3D-CTBA images can display clearly and vividly the targeted structure and the variations of vessels and bronchi. To reduce the risk of locoregional recurrence, the application of 3D-CTBA with a virtual 3D surgical margin help the VATS surgeon determine accurate distances and positional relations among the tumor, bronchial trees, and the intersegmental vessels. Three-dimensional navigation was performed to confirm the segmental structure, precisely cut off the targeted segment, and avoid intersegmental veins injury.

CONCLUSION

VATS and 3D-CTBA worked in harmony in our study. This combination also provided a new pattern of transition from lesion-directed location of tumors to computer-aided surgery for the management of early lung cancer.

Keywords: Thoracoscopy, Segmentectomy, Lobectomy, Three-dimensional computed tomography, Bronchography and angiography

Core Tip: To evaluate the therapeutic effect of video-assisted thoracoscopic surgery segmentectomy and lobectomy assisted by three-dimensional computed-tomography bronchography and angiography (3D-CTBA) on 123 patients. Using this method, surgeons can accurately identify and label targeted structures on the 3D-CTBA video and design meticulously to perform minimal unit resection with sufficient surgical margin.