Published online Aug 16, 2018. doi: 10.12998/wjcc.v6.i8.200
Peer-review started: March 28, 2018
First decision: May 16, 2018
Revised: June 7, 2018
Accepted: June 26, 2018
Article in press: June 27, 2018
Published online: August 16, 2018
Processing time: 141 Days and 20.7 Hours
To examine the accuracy of machine learning to relate particulate matter (PM) 2.5 and PM10 concentrations to upper respiratory tract infections (URIs).
Daily nationwide and regional outdoor PM2.5 and PM10 concentrations collected over 30 consecutive days obtained from the Taiwan Environment Protection Administration were the inputs for machine learning, using multilayer perceptron (MLP), to relate to the subsequent one-week outpatient visits for URIs. The URI data were obtained from the Centers for Disease Control datasets in Taiwan between 2009 and 2016. The testing used the middle month dataset of each season (January, April, July and October), and the training used the other months’ datasets. The weekly URI cases were classified by tertile as high, moderate, and low volumes.
Both PM concentrations and URI cases peak in winter and spring. In the nationwide data analysis, MLP machine learning can accurately relate the URI volumes of the elderly (89.05% and 88.32%, respectively) and the overall population (81.75% and 83.21%, respectively) with the PM2.5 and PM10 concentrations. In the regional data analyses, greater accuracy is found for PM2.5 than for PM10 for the elderly, particularly in the Central region (78.10% and 74.45%, respectively), whereas greater accuracy is found for PM10 than for PM2.5 for the overall population, particularly in the Northern region (73.19% and 63.04%, respectively).
Short-term PM2.5 and PM10 concentrations were accurately related to the subsequent occurrence of URIs by using machine learning. Our findings suggested that the effects of PM2.5 and PM10 on URI may differ by age, and the mechanism needs further evaluation.
Core tip: Particulate matter (PM) 2.5 and PM10 air pollutants can trigger inflammation and predispose the respiratory tract to infections. This study used the multilayer perceptron (MLP) machine learning architecture to relate the daily PM2.5 and PM10 concentrations over 30 consecutive days to the subsequent one-week outpatient visits for upper respiratory tract infections (URIs) in Taiwan between 2008 and 2016. In the nationwide data analysis, PM2.5 and PM10 concentrations can precisely predict the volumes of URI for the elderly (89.05% and 88.32%, respectively) and the overall population (81.75% and 83.21%, respectively). Our findings suggested that machine learning could accurately relate PM2.5 and PM10 concentrations to the outpatient visits for URI, especially for the elderly population.