Published online Aug 16, 2018. doi: 10.12998/wjcc.v6.i8.183
Peer-review started: February 2, 2018
First decision: March 7, 2018
Revised: March 29, 2018
Accepted: June 7, 2018
Article in press: June 8, 2018
Published online: August 16, 2018
Processing time: 196 Days and 9.3 Hours
To assess the antiviral effects of hepatitis B virus (HBV) S gene-specific anti-gene locked nucleic acid (LNA) in transgenic mice.
Thirty HBV transgenic mice were acclimatized to laboratory conditions and positive for serum HBV surface antigen (HBsAg) and HBV DNA, were randomly divided into 5 groups (n = 7), including negative control (blank control, unrelated sequence control), positive control (lamivudine, anti-sense-LNA), and anti-gene-LNA experimental group. LNA was injected into transgenic mice by tail vein while lamivudine was administered by gavage. Serum HBV DNA and HBsAg levels were determined by fluorescence-based PCR and enzyme-linked immune sorbent assay, respectively. HBV S gene expression amounts were assessed by reverse transcription polymerase chain reaction. Positive rates of HBsAg in liver cells were evaluated immunohistochemistry.
Average rate reductions of HBsAg after treatment on the 3rd, 5th, and 7th days were 32.34%, 45.96%, and 59.15%, respectively. The inhibitory effect of anti-gene-LNA on serum HBsAg peaked on day 7, with statistically significant differences compared with pre-treatment (0.96 ± 0.18 vs 2.35 ± 0.33, P < 0.05) and control values (P < 0.05 for all). Average reduction rates of HBV DNA on the 3rd, 5th, and 7th days were 38.55%, 50.95%, and 62.26%, respectively. This inhibitory effect peaked on the 7th day after treatment with anti-gene-LNA, with statistically significant differences compared with pre-treatment (4.17 ± 1.29 vs 11.05 ± 1.25, P < 0.05) and control values (P < 0.05 for all). The mRNA levels of the HBV S gene (P < 0.05 for all) and rates of HBsAg positive liver cells (P < 0.05 for all) were significantly reduced compared with the control groups. Liver and kidney function, and histology showed no abnormalities.
Anti-gene-LNA targeting the S gene of HBV displays strong inhibitory effects on HBV in transgenic mice, providing theoretical and experimental bases for gene therapy in HBV.
Core tip: We assess the antiviral effects of hepatitis B virus (HBV) S gene-specific anti-gene locked nucleic acid (LNA) in transgenic mice, to provide an experimental basis for gene therapy in patients with Chronic B-related Hepatitis. The inhibitory effect of anti-gene-LNA on serum HBV surface antigen (HBsAg) and HBV DNA peaked on day 7, with statistically significant differences compared with pre-treatment and control values. The mRNA levels of the HBVS gene and rates of HBsAg positive liver cells were significantly reduced compared with the control groups.