Case Control Study
Copyright ©The Author(s) 2025. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Cases. Aug 6, 2025; 13(22): 104379
Published online Aug 6, 2025. doi: 10.12998/wjcc.v13.i22.104379
Role of immature granulocyte and blood biomarkers in predicting perforated acute appendicitis using machine learning model
Zeynep Kucukakcali, Sami Akbulut
Zeynep Kucukakcali, Sami Akbulut, Department of Biostatistics and Medical Informatics, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
Sami Akbulut, Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
Author contributions: Akbulut S and Kucukakcali Z collected data, analyzed statistical, wrote manuscript, projected development and reviewed final version.
Institutional review board statement: This study was reviewed and approved by the Inonu University institutional review board for non-interventional studies (Approval No. 2024/6809).
Informed consent statement: Not applicable, as this study was retrospective.
Conflict-of-interest statement: The authors declare that they have no conflicts of interest regarding this study.
STROBE statement: The authors have read the STROBE Statement—checklist of items, and the manuscript was prepared and revised according to the STROBE Statement—checklist of items.
Data sharing statement: There are no additional data available for this study.
Open Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Sami Akbulut, MD, PhD, Professor, Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Elazig Yolu 10. Km, Malatya 44280, Türkiye. akbulutsami@gmail.com
Received: December 18, 2024
Revised: March 16, 2025
Accepted: April 11, 2025
Published online: August 6, 2025
Processing time: 146 Days and 17.7 Hours
Abstract
BACKGROUND

Acute appendicitis (AAp) is a prevalent medical condition characterized by inflammation of the appendix that frequently necessitates urgent surgical procedures. Approximately two-thirds of patients with AAp exhibit characteristic signs and symptoms; hence, negative AAp and complicated AAp are the primary concerns in research on AAp. In other terms, further investigations and algorithms are required for at least one third of patients to predict the clinical condition and distinguish them from uncomplicated patients with AAp.

AIM

To use a Stochastic Gradient Boosting (SGB)-based machine learning (ML) algorithm to tell the difference between AAp patients who are complicated and those who are not, and to find some important biomarkers for both types of AAp by using modeling to get variable importance values.

METHODS

This study analyzed an open access data set containing 140 people, including 41 healthy controls, 65 individuals with uncomplicated AAp, and 34 individuals with complicated AAp. We analyzed some demographic data (age, sex) of the patients and the following biochemical blood parameters: White blood cell (WBC) count, neutrophils, lymphocytes, monocytes, platelet count, neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, mean platelet volume, neutrophil-to-immature granulocyte ratio, ferritin, total bilirubin, immature granulocyte count, immature granulocyte percent, and neutrophil-to-immature granulocyte ratio. We tested the SGB model using n-fold cross-validation. It was implemented with an 80-20 training-test split. We used variable importance values to identify the variables that were most effective on the target.

RESULTS

The SGB model demonstrated excellent performance in distinguishing AAp from control patients with an accuracy of 96.3%, a micro aera under the curve (AUC) of 94.7%, a sensitivity of 94.7%, and a specificity of 100%. In distinguishing complicated AAp patients from uncomplicated ones, the model achieved an accuracy of 78.9%, a micro AUC of 79%, a sensitivity of 83.3%, and a specificity of 76.9%. The most useful biomarkers for confirming the AA diagnosis were WBC (100%), neutrophils (95.14%), and the lymphocyte-monocyte ratio (76.05%). On the other hand, the most useful biomarkers for accurate diagnosis of complicated AAp were total bilirubin (100%), WBC (96.90%), and the neutrophil-immature granulocytes ratio (64.05%).

CONCLUSION

The SGB model achieved high accuracy rates in identifying AAp patients while it showed moderate performance in distinguishing complicated AAp patients from uncomplicated AAp patients. Although the model's accuracy in the classification of complicated AAp is moderate, the high variable importance obtained is clinically significant. We need further prospective validation studies, but the integration of such ML algorithms into clinical practice may improve diagnostic processes.

Keywords: Acute appendicitis; Complicated acute appendicitis; Machine learning; Stochastic gradient boosting

Core Tip: This study uses an open access database and a Stochastic Gradient Boosting (SGB) machine learning algorithm to tell the difference between acute appendicitis (AAp) patients who are complicated and those who are not complicated. It also finds important biomarkers for both groups by using variable importance values that come from the modeling process. The SGB model demonstrated excellent precision in identifying AAp patients while exhibiting average performance in differentiating complicated AAp patients from uncomplicated ones.