Published online Oct 6, 2023. doi: 10.12998/wjcc.v11.i28.6688
Peer-review started: July 6, 2023
First decision: July 27, 2023
Revised: July 28, 2023
Accepted: August 31, 2023
Article in press: August 31, 2023
Published online: October 6, 2023
Processing time: 81 Days and 2.3 Hours
Antinuclear antibodies (ANAs) are crucial in diagnosing autoimmune diseases, mainly systemic lupus erythematosus (SLE). This study aimed to compare the performance of chemiluminescence assay (CLIA) and line immunoassay (LIA) in detecting ANAs in patients with autoimmune diseases, evaluate their diagnostic accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. Specimens from patients with autoimmune diseases and physical examination specimens were collected to parallel detect specific antibodies. Individual antibodies' diagnostic performance and a model combining multiple antibodies were assessed. The findings provide valuable insights into improving the diagnosis of SLE through innovative approaches.
To compare the performance of CLIA and LIA in detecting ANAs in patients with autoimmune diseases, assess their accuracy for SLE, and develop a novel diag
Specimens have been obtained from 270 patients with clinically diagnosed autoimmune disorders, as well as 130 physical examination specimens. After that, parallel detection of anti-double-stranded DNA (dsDNA) antibody, anti-histone (Histone) antibody, anti-nucleosome (Nuc) antibody, anti-Smith (Sm) antibody, anti-ribosomal P protein (Rib-P) antibody, anti-sicca syndrome A (Ro60) antibody, anti-sicca syndrome A (Ro52) antibody, anti-sicca syndrome (SSB) antibody, anti-centromere protein B (Cenp-B) antibody, anti-DNA topoisomerase 1 (Scl-70) antibody, anti-histidyl tRNA synthetase (Jo-1) antibody, and anti-mitochondrial M2 (AMA-M2) antibody was performed using CLIA and LIA. The detection rates, compliance rates, and diagnostic performance for SLE were compared between the two methodologies, followed by developing a novel diagnostic model for SLE.
CLIA and LIA exhibited essentially comparable detection rates for anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Rib-P antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-DNAScl-70 antibody, anti-Jo-1 antibody and anti-AMA-M2 antibody (P > 0.05). The two methods displayed identical results for the detection of anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-Scl-70 antibody, and anti-AMA-M2 antibody (Kappa > 0.7, P < 0.05), but showed a moderate agreement for the detection of anti-Rib-P antibody and anti-Jo-1 antibody (Kappa = 0.671 and 0.665; P < 0.05). In addition, the diagnostic performance of these antibodies detected by both methods was similar for SLE. The diagnostic model's area under the curve values, sensitivity, and specificity, including an anti-dsDNA antibody and an anti-Ro60 antibody detected by CLIA, were 0.997, 0.962, and 0.978, respectively. These values were higher than the diagnostic performance of individual antibodies.
CLIA and LIA demonstrated excellent overall consistency in detecting ANA profiles. A diagnostic model based on CLIA-detected antibodies can successfully contribute to developing a novel technique for detecting SLE.
Core Tip: Antinuclear antibodies (ANAs) are important biomarkers for diagnosing autoimmune diseases, with systemic lupus erythematosus (SLE) being one of the most well-known. This study aimed to compare the performance of two commonly used ANA detection methods, chemiluminescence assay (CLIA) and line immunoassay, in patients with autoimmune diseases. The findings demonstrated that for ANAs, particularly those associated with SLE, both techniques had equivalent detection rates and diagnostic precision. Additionally, a diagnostic model for SLE that uses CLIA-detected antibodies has been developed and shown to have better diagnostic accuracy than individual antibodies. Specifically, a combination of anti-dsDNA antibodies and anti-Ro60 antibodies detected by CLIA provided an effective strategy for diagnosing SLE. These results imply that an adequate diagnosis of SLE may benefit from a diagnostic model based on CLIA-detected antibodies, ultimately resulting in more efficient management and treatment of this autoimmune disease.