Retrospective Study
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Clin Cases. Oct 6, 2023; 11(28): 6688-6697
Published online Oct 6, 2023. doi: 10.12998/wjcc.v11.i28.6688
Clinical value of chemiluminescence method for detection of antinuclear antibody profiles
Hui-Yao Xiang, Xi-Ying Xiang, Ting-Bo Ten, Xie Ding, Yu-Wen Liu, Chun-Hua Luo
Hui-Yao Xiang, Xi-Ying Xiang, Ting-Bo Ten, Xie Ding, Yu-Wen Liu, Chun-Hua Luo, Medical Laboratory Science, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang 443003, Hubei Province, China
Author contributions: Xiang HY and Xiang XY proposed the concept of this study; Ten TB and Ding X contributed to data collection; Liu YW and Luo CH contributed to formal analysis; Luo CH and Xiang HY participated in the investigation; Xiang XY and Ten TB have contributed to these methods; Xiang HY, Xiang XY, Luo CH guide the research; Ding X validated this study; Xiang HY and Luo CH contributed to the visualization of this study; Xiang HY and Xiang XY have prepared the first draft; Xiang HY, Xiang XY, Ten TB, Ding X, Liu YW, and Luo CH reviewed and edited the manuscript.
Institutional review board statement: This research has been approved ethically by Yichang Central People's Hospital (The First Clinical School of China Three Gorges University, China).
Informed consent statement: All study participants, or their legal guardian, provided informed written consent prior to study enrollment.
Conflict-of-interest statement: All authors declare that there are no conflicts of interest.
Data sharing statement: No additional data are available.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Chun-Hua Luo, MD, Attending Doctor, Medical Laboratory Science, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, No. 183 Yiling Avenue, Yichang 443003, Hubei Province, China. douxia833@126.com
Received: July 6, 2023
Peer-review started: July 6, 2023
First decision: July 27, 2023
Revised: July 28, 2023
Accepted: August 31, 2023
Article in press: August 31, 2023
Published online: October 6, 2023
Processing time: 81 Days and 2.3 Hours
Abstract
BACKGROUND

Antinuclear antibodies (ANAs) are crucial in diagnosing autoimmune diseases, mainly systemic lupus erythematosus (SLE). This study aimed to compare the performance of chemiluminescence assay (CLIA) and line immunoassay (LIA) in detecting ANAs in patients with autoimmune diseases, evaluate their diagnostic accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE. Specimens from patients with autoimmune diseases and physical examination specimens were collected to parallel detect specific antibodies. Individual antibodies' diagnostic performance and a model combining multiple antibodies were assessed. The findings provide valuable insights into improving the diagnosis of SLE through innovative approaches.

AIM

To compare the performance of CLIA and LIA in detecting ANAs in patients with autoimmune diseases, assess their accuracy for SLE, and develop a novel diagnostic model using CLIA-detected antibodies for SLE.

METHODS

Specimens have been obtained from 270 patients with clinically diagnosed autoimmune disorders, as well as 130 physical examination specimens. After that, parallel detection of anti-double-stranded DNA (dsDNA) antibody, anti-histone (Histone) antibody, anti-nucleosome (Nuc) antibody, anti-Smith (Sm) antibody, anti-ribosomal P protein (Rib-P) antibody, anti-sicca syndrome A (Ro60) antibody, anti-sicca syndrome A (Ro52) antibody, anti-sicca syndrome (SSB) antibody, anti-centromere protein B (Cenp-B) antibody, anti-DNA topoisomerase 1 (Scl-70) antibody, anti-histidyl tRNA synthetase (Jo-1) antibody, and anti-mitochondrial M2 (AMA-M2) antibody was performed using CLIA and LIA. The detection rates, compliance rates, and diagnostic performance for SLE were compared between the two methodologies, followed by developing a novel diagnostic model for SLE.

RESULTS

CLIA and LIA exhibited essentially comparable detection rates for anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Rib-P antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-DNAScl-70 antibody, anti-Jo-1 antibody and anti-AMA-M2 antibody (P > 0.05). The two methods displayed identical results for the detection of anti-dsDNA antibody, anti-Histone antibody, anti-Nuc antibody, anti-Sm antibody, anti-Ro60 antibody, anti-Ro52 antibody, anti-SSB antibody, anti-Cenp-B antibody, anti-Scl-70 antibody, and anti-AMA-M2 antibody (Kappa > 0.7, P < 0.05), but showed a moderate agreement for the detection of anti-Rib-P antibody and anti-Jo-1 antibody (Kappa = 0.671 and 0.665; P < 0.05). In addition, the diagnostic performance of these antibodies detected by both methods was similar for SLE. The diagnostic model's area under the curve values, sensitivity, and specificity, including an anti-dsDNA antibody and an anti-Ro60 antibody detected by CLIA, were 0.997, 0.962, and 0.978, respectively. These values were higher than the diagnostic performance of individual antibodies.

CONCLUSION

CLIA and LIA demonstrated excellent overall consistency in detecting ANA profiles. A diagnostic model based on CLIA-detected antibodies can successfully contribute to developing a novel technique for detecting SLE.

Keywords: Chemiluminescence assay; Immunoblotting; Antinuclear antibody profile; Autoimmune diseases; Systemic lupus erythematosus; Diagnostic model

Core Tip: Antinuclear antibodies (ANAs) are important biomarkers for diagnosing autoimmune diseases, with systemic lupus erythematosus (SLE) being one of the most well-known. This study aimed to compare the performance of two commonly used ANA detection methods, chemiluminescence assay (CLIA) and line immunoassay, in patients with autoimmune diseases. The findings demonstrated that for ANAs, particularly those associated with SLE, both techniques had equivalent detection rates and diagnostic precision. Additionally, a diagnostic model for SLE that uses CLIA-detected antibodies has been developed and shown to have better diagnostic accuracy than individual antibodies. Specifically, a combination of anti-dsDNA antibodies and anti-Ro60 antibodies detected by CLIA provided an effective strategy for diagnosing SLE. These results imply that an adequate diagnosis of SLE may benefit from a diagnostic model based on CLIA-detected antibodies, ultimately resulting in more efficient management and treatment of this autoimmune disease.