Published online Jun 6, 2023. doi: 10.12998/wjcc.v11.i16.3813
Peer-review started: October 10, 2022
First decision: January 12, 2023
Revised: February 25, 2023
Accepted: April 20, 2023
Article in press: April 20, 2023
Published online: June 6, 2023
Processing time: 234 Days and 23 Hours
Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults. However, AML is relatively rare in the population overall, accounting for only about 1 percent of all cancers. Treatment for AML can be very effective for some patients, yet it leaves others with serious and even life-threatening side effects. Chemotherapy is still the primary treatment for most AML, but over time, leukemia cells become resistant to chemotherapy drugs. In addition, stem cell transplantation, targeted therapy, and immunotherapy are currently available. At the same time, with the progression of the disease, the patient may have corresponding complications, such as coagulation dysfunction, anemia, granulocytopenia, and repeated infection, so transfusion supportive therapy will be involved in the overall treatment regime. To date, few articles have reported on blood transfusion treatment options for patients with ABO subtypes AML-M2. Blood transfusion therapy is an important supportive treatment for AML-M2, and accurate determination of patients' blood type is one of the most important steps in the treatment process. In this study, we explored blood typing and supportive treatment strategies for a patient with A2 subtype AML-M2 to provide the basis for treatment for all patients.
In order to determine the blood type of the patient, serological and molecular biological methods were used for reference tests, and the genetic background was studied to determine the patient's final blood type and select the appropriate blood products for infusion treatment. According to the results obtained by serological and molecular biological methods, the blood type of the patient was A2 subtype; the genotype was A02/001; the irregular antibody screening was negative, and anti-A1 was found in the plasma. According to the overall treatment plan, active anti-infection, elevated cells, component blood transfusion support, and other rescue and supportive treatments were given, and the patient successfully passed the stage of myelosuppression after chemotherapy. Re-examination of bone marrow smears showed that AL was in complete remission of bone marrow signs, and minimal residual leukemia lesions suggested no cells with obvious abnormal immunophenotype (residual leukemia cells < 10-4).
The infusion of patients with A2 subtype AML-M2 with A irradiated platelets and O washing red blood cells can meet the needs of clinical treatment.
Core Tip: There has always been a debate on the large-scale transfusion therapy for acute myeloid leukemia (AML). This study provides strong and favorable evidence for the clinical treatment of blood transfusion. There are few specific reports in the literature on the treatment of blood transfusion for patients with AML-M2 blood type A2, and this study provides a protocol and precedent for the treatment of blood transfusion for patients with rare subtype AML. The study can provide clinical reference data for supporting transfusion therapy in patients with clinically rare blood type leukemia.