Published online Jun 26, 2022. doi: 10.12998/wjcc.v10.i18.5984
Peer-review started: February 21, 2022
First decision: March 23, 2022
Revised: March 30, 2022
Accepted: April 29, 2022
Article in press: April 29, 2022
Published online: June 26, 2022
Processing time: 116 Days and 1.6 Hours
Many factors have an aberrant effect on the overall survival of lung cancer (LC) patients. In recent years, remarkable progress has been made in immunotherapy, targeted treatment, and promising biomarkers. However, the available treatments and diagnostic methods are not specific for all patients.
To establish a system for predicting poor survival in patients with LC.
The expression matrix and clinical information for this study were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. After the differential analysis of all screened genes, weighted gene coexpression network analysis was performed to analyze hub genes related to patient survival. A logistic regression model was used to construct the scoring system. The expression of the hub genes was verified by performing quantitative reverse transcription-polymerase chain reaction.
A total of 5007 differentially expressed genes were selected for the Weighted Gene Co-expression Network Analysis algorithm. We found that the turquoise module showed the highest correlation with patient prognosis. The gene module with the greatest positive correlation with patient survival was located in the turquoise area. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses performed for the genes contained in the turquoise module indicated the potential roles of the selected genes in the regulation of LC development. In addition, protein–protein interaction analysis was performed to screen hub genes, which identified 100 hub genes located in the core area of the network. We then intersected the 100 hub genes with 75 key genes sorted by module members to identify real hub genes associated with prognosis. Forty-one genes were finally selected. We then used a logistic regression model to determine 11 independent risk genes, namely CCNB2, CDC20, CENPO, FOXM1, HJURP, NEK2, OIP5, PLK1, PRC1, SKA1, UBE2C and SPARC.
We constructed a predictive model based on 11 independent risk genes to establish a system predicting the survival status of patients with non-small-cell lung carcinoma.
Core Tip: This was a bioinformatics-based study aimed at identifying a novel system for predicting overall survival in lung cancer patients. We constructed a predictive model using Weighted Gene Co-expression Network Analysis, protein-protein interaction network, and least absolute contraction and selection operator-logistic regression analysis. And the expression of hub genes was verified by polymerase chain reaction, immunohistochemistry in lung cancer cell lines, and patient samples.