BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stride E, Saffari N. Microbubble ultrasound contrast agents: a review. Proc Inst Mech Eng H. 2003;217:429-447. [PMID: 14702981 DOI: 10.1243/09544110360729072] [Cited by in Crossref: 212] [Cited by in F6Publishing: 144] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Pancholi KP, Farook U, Moaleji R, Stride E, Edirisinghe MJ. Novel methods for preparing phospholipid coated microbubbles. Eur Biophys J 2008;37:515-20. [PMID: 17687548 DOI: 10.1007/s00249-007-0211-x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 52] [Article Influence: 4.1] [Reference Citation Analysis]
2 Kotopoulis S, Delalande A, Popa M, Mamaeva V, Dimcevski G, Gilja OH, Postema M, Gjertsen BT, McCormack E. Sonoporation-enhanced chemotherapy significantly reduces primary tumour burden in an orthotopic pancreatic cancer xenograft. Mol Imaging Biol 2014;16:53-62. [PMID: 23877869 DOI: 10.1007/s11307-013-0672-5] [Cited by in Crossref: 71] [Cited by in F6Publishing: 65] [Article Influence: 8.9] [Reference Citation Analysis]
3 Cosgrove D. Ultrasound contrast agents: an overview. Eur J Radiol 2006;60:324-30. [PMID: 16938418 DOI: 10.1016/j.ejrad.2006.06.022] [Cited by in Crossref: 335] [Cited by in F6Publishing: 252] [Article Influence: 20.9] [Reference Citation Analysis]
4 Sabuncu S, Yildirim A. Gas-stabilizing nanoparticles for ultrasound imaging and therapy of cancer. Nano Converg 2021;8:39. [PMID: 34851458 DOI: 10.1186/s40580-021-00287-2] [Reference Citation Analysis]
5 Ibsen S, Benchimol M, Simberg D, Esener S. Ultrasound mediated localized drug delivery. Adv Exp Med Biol 2012;733:145-53. [PMID: 22101720 DOI: 10.1007/978-94-007-2555-3_14] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
6 Cui P, Zhang A, Wang S, Khoo BC. Ice breaking by a collapsing bubble. J Fluid Mech 2018;841:287-309. [DOI: 10.1017/jfm.2018.63] [Cited by in Crossref: 83] [Cited by in F6Publishing: 12] [Article Influence: 20.8] [Reference Citation Analysis]
7 Wiedemair W, Tukovic Z, Jasak H, Poulikakos D, Kurtcuoglu V. The breakup of intravascular microbubbles and its impact on the endothelium. Biomech Model Mechanobiol 2017;16:611-24. [PMID: 27734169 DOI: 10.1007/s10237-016-0840-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
8 Vidallon MLP, Douek AM, Quek A, Mcliesh H, Kaslin J, Tabor RF, Bishop AI, Teo BM. Gas‐Generating, pH‐Responsive Calcium Carbonate Hybrid Particles with Biomimetic Coating for Contrast‐Enhanced Ultrasound Imaging. Part Part Syst Charact 2020;37:1900471. [DOI: 10.1002/ppsc.201900471] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Sboros V. Response of contrast agents to ultrasound. Adv Drug Deliv Rev 2008;60:1117-36. [PMID: 18486270 DOI: 10.1016/j.addr.2008.03.011] [Cited by in Crossref: 172] [Cited by in F6Publishing: 135] [Article Influence: 12.3] [Reference Citation Analysis]
10 Li F, Wang Y, Mo X, Deng Z, Yan F. Acoustic Characteristics of Biosynthetic Bubbles for Ultrasound Contrast Imaging. Langmuir 2019;35:10213-22. [PMID: 31119938 DOI: 10.1021/acs.langmuir.9b01225] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Jo SD, Ku SH, Won YY, Kim SH, Kwon IC. Targeted Nanotheranostics for Future Personalized Medicine: Recent Progress in Cancer Therapy. Theranostics 2016;6:1362-77. [PMID: 27375785 DOI: 10.7150/thno.15335] [Cited by in Crossref: 124] [Cited by in F6Publishing: 111] [Article Influence: 20.7] [Reference Citation Analysis]
12 Zhang J, Li N, Dong F, Liang S, Wang D, An J, Long Y, Wang Y, Luo Y, Zhang J. Ultrasound Microvascular Imaging Based on Super‐Resolution Radial Fluctuations. J Ultrasound Med 2020;39:1507-16. [DOI: 10.1002/jum.15238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Wang Q, Manmi K, Liu KK. Cell mechanics in biomedical cavitation. Interface Focus 2015;5:20150018. [PMID: 26442142 DOI: 10.1098/rsfs.2015.0018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
14 Moran CM. Ultrasonic contrast agents. Clinical Ultrasound. Elsevier; 2011. pp. 77-89. [DOI: 10.1016/b978-0-7020-3131-1.00006-7] [Cited by in Crossref: 5] [Article Influence: 0.5] [Reference Citation Analysis]
15 Chappell JC, Price RJ. Targeted Therapeutic Applications of Acoustically Active Microspheres in the Microcirculation. Microcirculation 2006;13:57-70. [DOI: 10.1080/10739680500383381] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 1.4] [Reference Citation Analysis]
16 Mahmoudi M, Serpooshan V, Laurent S. Engineered nanoparticles for biomolecular imaging. Nanoscale 2011;3:3007. [DOI: 10.1039/c1nr10326a] [Cited by in Crossref: 202] [Cited by in F6Publishing: 175] [Article Influence: 18.4] [Reference Citation Analysis]
17 Herrada MA, Gañán-calvo AM. Swirl flow focusing: A novel procedure for the massive production of monodisperse microbubbles. Physics of Fluids 2009;21:042003. [DOI: 10.1063/1.3123533] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]
18 Deprez J, Lajoinie G, Engelen Y, De Smedt SC, Lentacker I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv Drug Deliv Rev 2021;172:9-36. [PMID: 33705877 DOI: 10.1016/j.addr.2021.02.015] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 27.0] [Reference Citation Analysis]
19 Cowley J, Mulholland AJ, Gachagan A. A nonlinear elasticity approach to modelling the collapse of a shelled microbubble. IMA Journal of Applied Mathematics 2017;82:781-801. [DOI: 10.1093/imamat/hxx013] [Reference Citation Analysis]
20 Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. Drug Des Devel Ther. 2013;7:375-388. [PMID: 23667309 DOI: 10.2147/dddt.s31564] [Cited by in Crossref: 106] [Cited by in F6Publishing: 51] [Article Influence: 11.8] [Reference Citation Analysis]
21 Thakrar DB, Sultan MJ. The Role of Contrast-Enhanced Ultrasound in Managing Vascular Pathologies. J Med Imaging Radiat Sci 2019;50:590-5. [PMID: 31706878 DOI: 10.1016/j.jmir.2019.08.010] [Reference Citation Analysis]
22 Zheng H, Dayton PA, Caskey C, Zhao S, Qin S, Ferrara KW. Ultrasound-Driven Microbubble Oscillation and Translation Within Small Phantom Vessels. Ultrasound in Medicine & Biology 2007;33:1978-87. [DOI: 10.1016/j.ultrasmedbio.2007.06.007] [Cited by in Crossref: 43] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
23 Sutton JT, Raymond JL, Verleye MC, Pyne-Geithman GJ, Holland CK. Pulsed ultrasound enhances the delivery of nitric oxide from bubble liposomes to ex vivo porcine carotid tissue. Int J Nanomedicine 2014;9:4671-83. [PMID: 25336947 DOI: 10.2147/IJN.S63850] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
24 Yarmoska SK, Yoon H, Emelianov SY. Lipid Shell Composition Plays a Critical Role in the Stable Size Reduction of Perfluorocarbon Nanodroplets. Ultrasound Med Biol 2019;45:1489-99. [PMID: 30975536 DOI: 10.1016/j.ultrasmedbio.2019.02.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
25 Ban Q, Bai T, Duan X, Kong J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci 2017;5:190-210. [PMID: 27990534 DOI: 10.1039/c6bm00600k] [Cited by in Crossref: 106] [Cited by in F6Publishing: 13] [Article Influence: 26.5] [Reference Citation Analysis]
26 Polizzotti BD, Thomson LM, O'connell DW, Mcgowan FX, Kheir JN. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design: Optimization and Characterization of Stable LOMs. J Biomed Mater Res 2014;102:1148-56. [DOI: 10.1002/jbm.b.33096] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
27 Sharma D, Cartar H, Quiaoit K, Law N, Giles A, Czarnota GJ. Effect of Ultrasound-Stimulated Microbubbles and Hyperthermia on Tumor Vasculature of Breast Cancer Xenograft. J Ultrasound Med 2022. [PMID: 35142383 DOI: 10.1002/jum.15950] [Reference Citation Analysis]
28 Li B, Gu Y, Chen M. An experimental study on the cavitation of water with dissolved gases. Exp Fluids 2017;58. [DOI: 10.1007/s00348-017-2449-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 3.6] [Reference Citation Analysis]
29 Thomas RG, Jonnalagadda US, Kwan JJ. Biomedical Applications for Gas-Stabilizing Solid Cavitation Agents. Langmuir 2019;35:10106-15. [DOI: 10.1021/acs.langmuir.9b00795] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Postema M, van Wamel A, ten Cate FJ, de Jong N. High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles. Med Phys 2005;32:3707-11. [PMID: 16475770 DOI: 10.1118/1.2133718] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 4.4] [Reference Citation Analysis]
31 Torkzaban M, Machado P, Gupta I, Hai Y, Forsberg F. Contrast-Enhanced Ultrasound for Monitoring Non-surgical Treatments of Uterine Fibroids: A Systematic Review. Ultrasound Med Biol 2021;47:3-18. [PMID: 33239156 DOI: 10.1016/j.ultrasmedbio.2020.09.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 McLaughlan JR, Harput S, Abou-Saleh RH, Peyman SA, Evans S, Freear S. Characterisation of Liposome-Loaded Microbubble Populations for Subharmonic Imaging. Ultrasound Med Biol 2017;43:346-56. [PMID: 27789045 DOI: 10.1016/j.ultrasmedbio.2016.09.011] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
33 Um W, E. K. PK, Lee J, Kim CH, You DG, Park JH. Recent advances in nanomaterial-based augmented sonodynamic therapy of cancer. Chem Commun 2021;57:2854-66. [DOI: 10.1039/d0cc07750j] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
34 Blum NT, Yildirim A, Chattaraj R, Goodwin AP. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound. Theranostics 2017;7:694-702. [PMID: 28255360 DOI: 10.7150/thno.17522] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
35 Li B, Aid-launais R, Labour M, Zenych A, Juenet M, Choqueux C, Ollivier V, Couture O, Letourneur D, Chauvierre C. Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 2019;194:139-50. [DOI: 10.1016/j.biomaterials.2018.12.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
36 Toumia Y, Cerroni B, Domenici F, Lange H, Bianchi L, Cociorb M, Brasili F, Chiessi E, D'Agostino E, Van Den Abeele K, Heymans SV, D'Hooge J, Paradossi G. Phase Change Ultrasound Contrast Agents with a Photopolymerized Diacetylene Shell. Langmuir 2019;35:10116-27. [PMID: 31042396 DOI: 10.1021/acs.langmuir.9b01160] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
37 Perera RH, Hernandez C, Zhou H, Kota P, Burke A, Exner AA. Ultrasound imaging beyond the vasculature with new generation contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015;7:593-608. [PMID: 25580914 DOI: 10.1002/wnan.1326] [Cited by in Crossref: 50] [Cited by in F6Publishing: 41] [Article Influence: 7.1] [Reference Citation Analysis]
38 Davoodi P, Feng F, Xu Q, Yan W, Tong YW, Srinivasan M, Sharma VK, Wang C. Coaxial electrohydrodynamic atomization: Microparticles for drug delivery applications. Journal of Controlled Release 2015;205:70-82. [DOI: 10.1016/j.jconrel.2014.12.004] [Cited by in Crossref: 58] [Cited by in F6Publishing: 50] [Article Influence: 8.3] [Reference Citation Analysis]
39 Sohmiya H, Fujita M, Kimura T. New development of ‘sono-functional’ molecule: Binding to DNA by sonication. Ultrasonics Sonochemistry 2010;17:633-6. [DOI: 10.1016/j.ultsonch.2009.12.018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
40 Diamantis K, Dermitzakis A, Hopgood JR, Sboros V. Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization Using Parametric Statistical Estimation. IEEE Access 2018;6:14188-203. [DOI: 10.1109/access.2018.2807807] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
41 Maksimova EA, Barmin RA, Rudakovskaya PG, Sindeeva OA, Prikhozhdenko ES, Yashchenok AM, Khlebtsov BN, Solovev AA, Huang G, Mei Y, Kanti Dey K, Gorin DA. Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc Phthalocyanine for Multimodal Imaging. Micromachines (Basel) 2021;12:1161. [PMID: 34683212 DOI: 10.3390/mi12101161] [Reference Citation Analysis]
42 Jeganathan S, Budziszewski E, Bielecki P, Kolios MC, Exner AA. In situ forming implants exposed to ultrasound enhance therapeutic efficacy in subcutaneous murine tumors. J Control Release 2020;324:146-55. [PMID: 32389777 DOI: 10.1016/j.jconrel.2020.05.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Chen H, Hwang JH. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultrasound 2013;1:10. [PMID: 25512858 DOI: 10.1186/2050-5736-1-10] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 6.6] [Reference Citation Analysis]
44 Yan WC, Chua QW, Ong XJ, Sharma VK, Tong YW, Wang CH. Fabrication of ultrasound-responsive microbubbles via coaxial electrohydrodynamic atomization for triggered release of tPA. J Colloid Interface Sci 2017;501:282-93. [PMID: 28460221 DOI: 10.1016/j.jcis.2017.04.073] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
45 Tu J, Matula TJ, Brayman AA, Crum LA. Inertial cavitation dose produced in ex vivo rabbit ear arteries with optison® by 1-mhz pulsed ultrasound. Ultrasound in Medicine & Biology 2006;32:281-8. [DOI: 10.1016/j.ultrasmedbio.2005.10.001] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 2.8] [Reference Citation Analysis]
46 Huerre A, Miralles V, Jullien M. Bubbles and foams in microfluidics. Soft Matter 2014;10:6888-902. [DOI: 10.1039/c4sm00595c] [Cited by in Crossref: 63] [Cited by in F6Publishing: 11] [Article Influence: 7.9] [Reference Citation Analysis]
47 Niu G, Chen X. PET Imaging of Angiogenesis. PET Clin 2009;4:17-38. [PMID: 20046926 DOI: 10.1016/j.cpet.2009.04.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 6.5] [Reference Citation Analysis]
48 Churchman AH, Mico V, de Pablo JG, Peyman SA, Freear S, Evans SD. Combined flow-focus and self-assembly routes for the formation of lipid stabilized oil-shelled microbubbles. Microsyst Nanoeng 2018;4. [DOI: 10.1038/micronano.2017.87] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
49 Abou-saleh RH, Swain M, Evans SD, Thomson NH. Poly(ethylene glycol) Lipid-Shelled Microbubbles: Abundance, Stability, and Mechanical Properties. Langmuir 2014;30:5557-63. [DOI: 10.1021/la404804u] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 4.6] [Reference Citation Analysis]
50 Das D, Pramanik M. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. J Biomed Opt 2019;24:1-8. [PMID: 31342692 DOI: 10.1117/1.JBO.24.12.121902] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
51 Jones RM, Hynynen K. Advances in acoustic monitoring and control of focused ultrasound-mediated increases in blood-brain barrier permeability. Br J Radiol 2019;92:20180601. [PMID: 30507302 DOI: 10.1259/bjr.20180601] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
52 Li K, Thomasson D, Ketai L, Contag C, Pomper M, Wright M, Bray M. Potential applications of conventional and molecular imaging to biodefense research. Clin Infect Dis 2005;40:1471-80. [PMID: 15844070 DOI: 10.1086/429723] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
53 Josefsson L, Goodall D, Emmer Å. Implementation of a ultraviolet area imaging detector for analysis of polyvinyl alcohol microbubbles by capillary electrophoresis. J Chromatogr A 2020;1619:460899. [PMID: 31983415 DOI: 10.1016/j.chroma.2020.460899] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 de Leon A, Wei P, Bordera F, Wegierak D, Mcmillen M, Yan D, Hemmingsen C, Kolios MC, Pentzer EB, Exner AA. Pickering Bubbles as Dual-Modality Ultrasound and Photoacoustic Contrast Agents. ACS Appl Mater Interfaces 2020;12:22308-17. [DOI: 10.1021/acsami.0c02091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
55 Cai W, Gambhir SS, Chen X. Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 2008;445:141-76. [PMID: 19022059 DOI: 10.1016/S0076-6879(08)03007-3] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
56 Song S, Guo H, Jiang Z, Jin Y, Wu Y, An X, Zhang Z, Sun K, Dou H. Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging. Acta Biomater 2015;24:266-78. [PMID: 26112374 DOI: 10.1016/j.actbio.2015.06.025] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
57 Briggs K, Al Mahrouki A, Nofiele J, El-Falou A, Stanisz M, Kim HC, Kolios MC, Czarnota GJ. Non-invasive monitoring of ultrasound-stimulated microbubble radiation enhancement using photoacoustic imaging. Technol Cancer Res Treat 2014;13:435-44. [PMID: 24000993 DOI: 10.7785/tcrtexpress.2013.600266] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 0.2] [Reference Citation Analysis]
58 Fujisawa K, Asada A. Numerical and experimental studies on nonlinear parametric sound enhancement through different fluid layers. Wave Motion 2017;75:13-24. [DOI: 10.1016/j.wavemoti.2017.08.002] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
59 Stride E, Saffari N. On the destruction of microbubble ultrasound contrast agents. Ultrasound Med Biol 2003;29:563-73. [PMID: 12749926 DOI: 10.1016/s0301-5629(02)00787-1] [Cited by in Crossref: 65] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
60 Beguin E, Shrivastava S, Dezhkunov NV, McHale AP, Callan JF, Stride E. Direct Evidence of Multibubble Sonoluminescence Using Therapeutic Ultrasound and Microbubbles. ACS Appl Mater Interfaces 2019;11:19913-9. [PMID: 31074968 DOI: 10.1021/acsami.9b07084] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
61 O’shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 2016;61:R90-R137. [DOI: 10.1088/0031-9155/61/8/r90] [Cited by in Crossref: 59] [Cited by in F6Publishing: 19] [Article Influence: 9.8] [Reference Citation Analysis]
62 Chen KT, Wei KC, Liu HL. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019;10:86. [PMID: 30792657 DOI: 10.3389/fphar.2019.00086] [Cited by in Crossref: 46] [Cited by in F6Publishing: 35] [Article Influence: 15.3] [Reference Citation Analysis]
63 Yang F, Gu Z, Jin X, Wang H, Gu N. Magnetic microbubble: A biomedical platform co-constructed from magnetics and acoustics. Chinese Phys B 2013;22:104301. [DOI: 10.1088/1674-1056/22/10/104301] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
64 Lin F, Cachard C, Varray F, Basset O. Generalization of Multipulse Transmission Techniques for Ultrasound Imaging. Ultrason Imaging 2015;37:294-311. [PMID: 25628094 DOI: 10.1177/0161734614566696] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
65 Tan BH, An H, Ohl C. Stability of surface and bulk nanobubbles. Current Opinion in Colloid & Interface Science 2021;53:101428. [DOI: 10.1016/j.cocis.2021.101428] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
66 Hameed S, Zhang M, Bhattarai P, Mustafa G, Dai Z. Enhancing cancer therapeutic efficacy through ultrasound‐mediated micro‐to‐nano conversion. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1604] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Hall RL, Juan-Sing ZD, Hoyt K, Sirsi SR. Formulation and Characterization of Chemically Cross-linked Microbubble Clusters. Langmuir 2019;35:10977-86. [PMID: 31310715 DOI: 10.1021/acs.langmuir.9b00475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
68 Suresh Kumar N, Padma Suvarna R, Chandra Babu Naidu K, Banerjee P, Ratnamala A, Manjunatha H. A review on biological and biomimetic materials and their applications. Appl Phys A 2020;126. [DOI: 10.1007/s00339-020-03633-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 7.5] [Reference Citation Analysis]
69 Xu JS, Huang J, Qin R, Hinkle GH, Povoski SP, Martin EW, Xu RX. Synthesizing and binding dual-mode poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 2010;31:1716-22. [PMID: 20006382 DOI: 10.1016/j.biomaterials.2009.11.052] [Cited by in Crossref: 66] [Cited by in F6Publishing: 62] [Article Influence: 5.1] [Reference Citation Analysis]
70 Tian F, Zhong X, Zhao J, Gu Y, Fan Y, Shi F, Zhang Y, Tan Y, Chen W, Yi C, Yang M. Hybrid theranostic microbubbles for ultrasound/photoacoustic imaging guided starvation/low-temperature photothermal/hypoxia-activated synergistic cancer therapy. J Mater Chem B 2021;9:9358-69. [PMID: 34726226 DOI: 10.1039/d1tb01735g] [Reference Citation Analysis]
71 Li B, Gu Y, Chen M. Cavitation inception of water with solid nanoparticles: A molecular dynamics study. Ultrasonics Sonochemistry 2019;51:120-8. [DOI: 10.1016/j.ultsonch.2018.10.036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
72 Stride E, Saffari N. The potential for thermal damage posed by microbubble ultrasound contrast agents. Ultrasonics 2004;42:907-13. [PMID: 15047405 DOI: 10.1016/j.ultras.2003.12.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
73 Guarino V, D’albore M, Altobelli R, Ambrosio L. Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering. International Polymer Processing 2016;31:587-97. [DOI: 10.3139/217.3239] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
74 Chappell JC, Klibanov AL, Price RJ. Ultrasound-microbubble-induced neovascularization in mouse skeletal muscle. Ultrasound in Medicine & Biology 2005;31:1411-22. [DOI: 10.1016/j.ultrasmedbio.2005.06.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
75 Smith E, Nie L, Mclaughlan J, Clegg H, Carpenter T, Cowell D, Evans S, Frangi AF, Freear S. An Open Access Chamber Designed for the Acoustic Characterisation of Microbubbles. Applied Sciences 2022;12:1818. [DOI: 10.3390/app12041818] [Reference Citation Analysis]
76 Sun D, Lin X, Zhang Z, Gu N. Impact of Shock-Induced Lipid Nanobubble Collapse on a Phospholipid Membrane. J Phys Chem C 2016;120:18803-10. [DOI: 10.1021/acs.jpcc.6b04086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
77 Delaney LJ, Isguven S, Eisenbrey JR, Hickok NJ, Forsberg F. Making waves: how ultrasound-targeted drug delivery is changing pharmaceutical approaches. Mater Adv . [DOI: 10.1039/d1ma01197a] [Reference Citation Analysis]
78 Lee J, Min H, You DG, Kim K, Kwon IC, Rhim T, Lee KY. Theranostic gas-generating nanoparticles for targeted ultrasound imaging and treatment of neuroblastoma. Journal of Controlled Release 2016;223:197-206. [DOI: 10.1016/j.jconrel.2015.12.051] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 7.7] [Reference Citation Analysis]
79 Ibsen S, Benchimol M, Simberg D, Schutt C, Steiner J, Esener S. A novel nested liposome drug delivery vehicle capable of ultrasound triggered release of its payload. J Control Release 2011;155:358-66. [PMID: 21745505 DOI: 10.1016/j.jconrel.2011.06.032] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 4.7] [Reference Citation Analysis]
80 Wischhusen J, Padilla F. Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery into Tumor Tissue. IRBM 2019;40:10-5. [DOI: 10.1016/j.irbm.2018.11.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
81 Wang J, Barback CV, Ta CN, Weeks J, Gude N, Mattrey RF, Blair SL, Trogler WC, Lee H, Kummel AC. Extended Lifetime In Vivo Pulse Stimulated Ultrasound Imaging. IEEE Trans Med Imaging 2018;37:222-9. [PMID: 28829305 DOI: 10.1109/TMI.2017.2740784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
82 Versluis M, Stride E, Lajoinie G, Dollet B, Segers T. Ultrasound Contrast Agent Modeling: A Review. Ultrasound Med Biol 2020;46:2117-44. [PMID: 32546411 DOI: 10.1016/j.ultrasmedbio.2020.04.014] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 13.5] [Reference Citation Analysis]
83 Yuan G, Ni B, Wu Q, Xue Y, Zhang A. An experimental study on the dynamics and damage capabilities of a bubble collapsing in the neighborhood of a floating ice cake. Journal of Fluids and Structures 2020;92:102833. [DOI: 10.1016/j.jfluidstructs.2019.102833] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
84 Skelton SE, Sergides M, Memoli G, Maragó OM, Jones PH. Trapping and deformation of microbubbles in a dual-beam fibre-optic trap. J Opt 2012;14:075706. [DOI: 10.1088/2040-8978/14/7/075706] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
85 Yildirim A, Blum NT, Goodwin AP. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 2019;9:2572-94. [PMID: 31131054 DOI: 10.7150/thno.32424] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 7.3] [Reference Citation Analysis]
86 Wiedemair W, Tukovic Z, Jasak H, Poulikakos D, Kurtcuoglu V. Modeling the interaction of microbubbles: Effects of proximity, confinement, and excitation amplitude. Physics of Fluids 2014;26:062106. [DOI: 10.1063/1.4883482] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
87 Telichko AV, Lee T, Hyun D, Chowdhury SM, Bachawal S, Herickhoff CD, Paulmurugan R, Dahl JJ. Passive Cavitation Mapping by Cavitation Source Localization From Aperture-Domain Signals-Part II: Phantom and In Vivo Experiments. IEEE Trans Ultrason Ferroelectr Freq Control 2021;68:1198-212. [PMID: 33141666 DOI: 10.1109/TUFFC.2020.3035709] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
88 Farook U, Stride E, Edirisinghe MJ. Preparation of suspensions of phospholipid-coated microbubbles by coaxial electrohydrodynamic atomization. J R Soc Interface 2009;6:271-7. [PMID: 18647738 DOI: 10.1098/rsif.2008.0225] [Cited by in Crossref: 65] [Cited by in F6Publishing: 59] [Article Influence: 5.0] [Reference Citation Analysis]
89 Chen CC, Borden MA. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles. Langmuir 2010;26:13183-94. [PMID: 20695557 DOI: 10.1021/la101796p] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 3.1] [Reference Citation Analysis]
90 Zhang X, Liu R, Dai Z. Multicolor nanobubbles for FRET/ultrasound dual-modal contrast imaging. Nanoscale 2018;10:20347-53. [PMID: 30375631 DOI: 10.1039/c8nr05488f] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Tan BH, An H, Ohl C. How Bulk Nanobubbles Might Survive. Phys Rev Lett 2020;124. [DOI: 10.1103/physrevlett.124.134503] [Cited by in Crossref: 23] [Cited by in F6Publishing: 2] [Article Influence: 11.5] [Reference Citation Analysis]
92 Glynos E, Koutsos V, Mcdicken WN, Moran CM, Pye SD, Ross JA, Sboros V. Nanomechanics of Biocompatible Hollow Thin-Shell Polymer Microspheres. Langmuir 2009;25:7514-22. [DOI: 10.1021/la900317d] [Cited by in Crossref: 45] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
93 Farook U, Edirisinghe MJ, Stride E, Colombo P. Novel co-axial electrohydrodynamic in-situ preparation of liquid-filled polymer-shell microspheres for biomedical applications. Journal of Microencapsulation 2008;25:241-7. [DOI: 10.1080/02652040801896666] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
94 Hassan MA, Feril LB, Suzuki K, Kudo N, Tachibana K, Kondo T. Evaluation and comparison of three novel microbubbles: Enhancement of ultrasound-induced cell death and free radicals production. Ultrasonics Sonochemistry 2009;16:372-8. [DOI: 10.1016/j.ultsonch.2008.10.003] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
95 Memoli G, Fury CR, Baxter KO, Gélat PN, Jones PH. Acoustic force measurements on polymer-coated microbubbles in a microfluidic device. J Acoust Soc Am 2017;141:3364. [PMID: 28599556 DOI: 10.1121/1.4979933] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
96 Zhang S, Huang A, Bar‐zion A, Wang J, Mena OV, Shapiro MG, Friend J. The Vibration Behavior of Sub‐Micrometer Gas Vesicles in Response to Acoustic Excitation Determined via Laser Doppler Vibrometry. Adv Funct Mater 2020;30:2000239. [DOI: 10.1002/adfm.202000239] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
97 Jones PH, Maragó OM, Stride EPJ. Parametrization of trapping forces on microbubbles in scanning optical tweezers. J Opt A: Pure Appl Opt 2007;9:S278-83. [DOI: 10.1088/1464-4258/9/8/s23] [Cited by in Crossref: 25] [Article Influence: 1.7] [Reference Citation Analysis]
98 Tortoli P, Guidi F, Mori R, Vos HJ. The use of microbubbles in Doppler ultrasound studies. Med Biol Eng Comput 2009;47:827-38. [DOI: 10.1007/s11517-008-0423-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
99 Oddo L, Cerroni B, Domenici F, Bedini A, Bordi F, Chiessi E, Gerbes S, Paradossi G. Next generation ultrasound platforms for theranostics. J Colloid Interface Sci 2017;491:151-60. [PMID: 28024192 DOI: 10.1016/j.jcis.2016.12.030] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
100 Christensen-Jeffries K, Couture O, Dayton PA, Eldar YC, Hynynen K, Kiessling F, O'Reilly M, Pinton GF, Schmitz G, Tang MX, Tanter M, van Sloun RJG. Super-resolution Ultrasound Imaging. Ultrasound Med Biol 2020;46:865-91. [PMID: 31973952 DOI: 10.1016/j.ultrasmedbio.2019.11.013] [Cited by in Crossref: 47] [Cited by in F6Publishing: 25] [Article Influence: 23.5] [Reference Citation Analysis]
101 Ohl S, Bin Md. Rahim MHH, Klaseboer E, Cheong Khoo B. Blake, bubbles and boundary element methods. IMA Journal of Applied Mathematics 2020;85:190-213. [DOI: 10.1093/imamat/hxz032] [Reference Citation Analysis]
102 Crocco M, Pellegretti P, Sciallero C, Trucco A. Combining multi-pulse excitation and chirp coding in contrast-enhanced ultrasound imaging. Meas Sci Technol 2009;20:104017. [DOI: 10.1088/0957-0233/20/10/104017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 1] [Article Influence: 1.8] [Reference Citation Analysis]
103 Yoon YI, Pang X, Jung S, Zhang G, Kong M, Liu G, Chen X. Smart Gold Nanoparticle-Stabilized Ultrasound Microbubbles as Cancer Theranostics. J Mater Chem B 2018;6:3235-9. [PMID: 30420913 DOI: 10.1039/C8TB00368H] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
104 Butler MB, Thomas DH, Pye SD, Moran CM, Mcdicken WN, Sboros V. The acoustic response from individual attached and unattached rigid shelled microbubbles. Appl Phys Lett 2008;93:223906. [DOI: 10.1063/1.3040699] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
105 Krehbiel JD, Schideman LC, King DA, Freund JB. Algal cell disruption using microbubbles to localize ultrasonic energy. Bioresour Technol 2014;173:448-51. [PMID: 25311188 DOI: 10.1016/j.biortech.2014.09.072] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
106 Radhakrishnan K, Bader KB, Haworth KJ, Kopechek JA, Raymond JL, Huang SL, McPherson DD, Holland CK. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents. Phys Med Biol 2013;58:6541-63. [PMID: 24002637 DOI: 10.1088/0031-9155/58/18/6541] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
107 Marshall G, Sykes A, Berry J, Jonker L. The “humble” bubble: Contrast-enhanced ultrasound. Radiography 2011;17:345-9. [DOI: 10.1016/j.radi.2011.05.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
108 Chen H, Brayman AA, Matula TJ. Characteristic microvessel relaxation timescales associated with ultrasound-activated microbubbles. Appl Phys Lett 2012;101:163704. [PMID: 23152641 DOI: 10.1063/1.4761937] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
109 Chen CC, Borden MA. The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials 2011;32:6579-87. [PMID: 21683439 DOI: 10.1016/j.biomaterials.2011.05.027] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 4.3] [Reference Citation Analysis]
110 Farook U, Zhang HB, Edirisinghe MJ, Stride E, Saffari N. Preparation of microbubble suspensions by co-axial electrohydrodynamic atomization. Med Eng Phys 2007;29:749-54. [PMID: 17035065 DOI: 10.1016/j.medengphy.2006.08.009] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 4.2] [Reference Citation Analysis]
111 Luan Y, Lajoinie G, Gelderblom E, Skachkov I, van der Steen AF, Vos HJ, Versluis M, De Jong N. Lipid Shedding from Single Oscillating Microbubbles. Ultrasound in Medicine & Biology 2014;40:1834-46. [DOI: 10.1016/j.ultrasmedbio.2014.02.031] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 6.5] [Reference Citation Analysis]
112 Mountford PA, Smith WS, Borden MA. Fluorocarbon nanodrops as acoustic temperature probes. Langmuir 2015;31:10656-63. [PMID: 26359919 DOI: 10.1021/acs.langmuir.5b02308] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
113 Foroozan F, O'Reilly MA, Hynynen K. Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods. IEEE Trans Biomed Eng 2018;65:2692-703. [PMID: 29993387 DOI: 10.1109/TBME.2018.2813759] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
114 Lee SJ, Park HW, Jung SY. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows. J Synchrotron Radiat 2014;21:1160-6. [PMID: 25178007 DOI: 10.1107/S1600577514013423] [Cited by in Crossref: 9] [Article Influence: 1.1] [Reference Citation Analysis]
115 Dockar D, Gibelli L, Borg MK. Forced oscillation dynamics of surface nanobubbles. J Chem Phys 2020;153:184705. [PMID: 33187431 DOI: 10.1063/5.0028437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
116 Jones PH, Stride E, Saffari N. Trapping and manipulation of microscopic bubbles with a scanning optical tweezer. Appl Phys Lett 2006;89:081113. [DOI: 10.1063/1.2338512] [Cited by in Crossref: 60] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
117 Zhang Y, Tachibana R, Okamoto A, Azuma T, Sasaki A, Yoshinaka K, Tei Y, Takagi S, Matsumoto Y. Ultrasound-mediated gene transfection in vitro: effect of ultrasonic parameters on efficiency and cell viability. Int J Hyperthermia 2012;28:290-9. [PMID: 22621731 DOI: 10.3109/02656736.2012.665568] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
118 Park H, Yeom E, Seo SJ, Lim JH, Lee SJ. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles. Sci Rep 2015;5:8840. [PMID: 25744850 DOI: 10.1038/srep08840] [Cited by in Crossref: 6] [Article Influence: 0.9] [Reference Citation Analysis]
119 Cowley J, McGinty S. A mathematical model of sonoporation using a liquid-crystalline shelled microbubble. Ultrasonics 2019;96:214-9. [PMID: 30739724 DOI: 10.1016/j.ultras.2019.01.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
120 Abou-saleh RH, Delaney A, Ingram N, Batchelor DVB, Johnson BRG, Charalambous A, Bushby RJ, Peyman SA, Coletta PL, Markham AF, Evans SD. Freeze-Dried Therapeutic Microbubbles: Stability and Gas Exchange. ACS Appl Bio Mater 2020;3:7840-8. [DOI: 10.1021/acsabm.0c00982] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
121 Wang D, Zhong H, Zhai Y, Hu H, Jin B, Wan M. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents. Ultrasound Med Biol 2016;42:561-73. [PMID: 26617242 DOI: 10.1016/j.ultrasmedbio.2015.10.006] [Cited by in Crossref: 9] [Article Influence: 1.3] [Reference Citation Analysis]
122 Lascaud J, Dash P, Würl M, Wieser HP, Wollant B, Kalunga R, Assmann W, Clevert DA, Ferrari A, Sala P, Savoia AS, Parodi K. Enhancement of the ionoacoustic effect through ultrasound and photoacoustic contrast agents. Sci Rep 2021;11:2725. [PMID: 33526802 DOI: 10.1038/s41598-021-81964-4] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
123 Pan D, Lanza GM, Wickline SA, Caruthers SD. Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol 2009;70:274-85. [PMID: 19268515 DOI: 10.1016/j.ejrad.2009.01.042] [Cited by in Crossref: 75] [Cited by in F6Publishing: 59] [Article Influence: 5.8] [Reference Citation Analysis]
124 Frinking P, Segers T, Luan Y, Tranquart F. Three Decades of Ultrasound Contrast Agents: A Review of the Past, Present and Future Improvements. Ultrasound in Medicine & Biology 2020;46:892-908. [DOI: 10.1016/j.ultrasmedbio.2019.12.008] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 18.0] [Reference Citation Analysis]
125 Ohl CD, Arora M, Ikink R, de Jong N, Versluis M, Delius M, Lohse D. Sonoporation from jetting cavitation bubbles. Biophys J 2006;91:4285-95. [PMID: 16950843 DOI: 10.1529/biophysj.105.075366] [Cited by in Crossref: 317] [Cited by in F6Publishing: 232] [Article Influence: 19.8] [Reference Citation Analysis]
126 King DA, Malloy MJ, Roberts AC, Haak A, Yoder CC, O'Brien WD Jr. Determination of postexcitation thresholds for single ultrasound contrast agent microbubbles using double passive cavitation detection. J Acoust Soc Am 2010;127:3449-55. [PMID: 20550244 DOI: 10.1121/1.3373405] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
127 Pouliopoulos AN, Choi JJ. Superharmonic microbubble Doppler effect in ultrasound therapy. Phys Med Biol 2016;61:6154-71. [PMID: 27469394 DOI: 10.1088/0031-9155/61/16/6154] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
128 Fehm TF, Deán-ben XL, Razansky D. Four dimensional hybrid ultrasound and optoacoustic imaging via passive element optical excitation in a hand-held probe. Appl Phys Lett 2014;105:173505. [DOI: 10.1063/1.4900520] [Cited by in Crossref: 36] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
129 Yin Z, Huang Z, Tu C, Gao X, Bao F. Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface. Water 2020;12:2794. [DOI: 10.3390/w12102794] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Osborn J, Pullan JE, Froberg J, Shreffler J, Gange KN, Molden T, Choi Y, Brooks A, Mallik S, Sarkar K. Echogenic exosomes as ultrasound contrast agents. Nanoscale Adv 2020;2:3411-22. [DOI: 10.1039/d0na00339e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Song S, Guo H, Jiang Z, Jin Y, Zhang Z, Sun K, Dou H. Self-Assembled Fe 3 O 4 /Polymer Hybrid Microbubble with MRI/Ultrasound Dual-Imaging Enhancement. Langmuir 2014;30:10557-61. [DOI: 10.1021/la5021115] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.8] [Reference Citation Analysis]
132 Qiu Y, Zhang C, Tu J, Zhang D. Microbubble-induced sonoporation involved in ultrasound-mediated DNA transfection in vitro at low acoustic pressures. J Biomech. 2012;45:1339-1345. [PMID: 22498312 DOI: 10.1016/j.jbiomech.2012.03.011] [Cited by in Crossref: 62] [Cited by in F6Publishing: 49] [Article Influence: 6.2] [Reference Citation Analysis]
133 Yuan J, Usman A, Das T, Patterson AJ, Gillard JH, Graves MJ. Imaging Carotid Atherosclerosis Plaque Ulceration: Comparison of Advanced Imaging Modalities and Recent Developments. AJNR Am J Neuroradiol 2017;38:664-71. [PMID: 28007772 DOI: 10.3174/ajnr.A5026] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
134 Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Current Opinion in Colloid & Interface Science 2021;54:101456. [DOI: 10.1016/j.cocis.2021.101456] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
135 Park J, Park D, Shin U, Moon S, Kim C, Kim HS, Park H, Choi K, Jung B, Oh J, Seo J. Synthesis of laboratory Ultrasound Contrast Agents. Molecules 2013;18:13078-95. [PMID: 24152677 DOI: 10.3390/molecules181013078] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
136 Yu T, Xiong S, Mason TJ, Wang Z. The use of a microbubble agent to enhance rabbit liver destruction using high intensity focused ultrasound. Ultrasonics Sonochemistry 2006;13:143-9. [DOI: 10.1016/j.ultsonch.2005.02.001] [Cited by in Crossref: 33] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
137 Ellens N, Hynynen K. High-intensity focused ultrasound for medical therapy. Power Ultrasonics. Elsevier; 2015. pp. 661-93. [DOI: 10.1016/b978-1-78242-028-6.00022-3] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
138 Wang ZD, Haitham S, Gong JP, Pen ZL. Contrast enhanced ultrasound in diagnosing liver lesion that spontaneously disappeared: A case report . World J Clin Cases 2021; 9(21): 5948-5954 [PMID: 34368313 DOI: 10.12998/wjcc.v9.i21.5948] [Reference Citation Analysis]
139 de Saint Victor M, Crake C, Coussios C, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opinion on Drug Delivery 2013;11:187-209. [DOI: 10.1517/17425247.2014.868434] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 5.8] [Reference Citation Analysis]
140 Cai W, Chen X. Nanoplatforms for Targeted Molecular Imaging in Living Subjects. Small 2007;3:1840-54. [DOI: 10.1002/smll.200700351] [Cited by in Crossref: 403] [Cited by in F6Publishing: 353] [Article Influence: 26.9] [Reference Citation Analysis]
141 Rademeyer P, Carugo D, Lee JY, Stride E. Microfluidic system for high throughput characterisation of echogenic particles. Lab Chip 2015;15:417-28. [PMID: 25367757 DOI: 10.1039/c4lc01206b] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 2.1] [Reference Citation Analysis]
142 Stride E, Edirisinghe M. Novel microbubble preparation technologies. Soft Matter 2008;4:2350. [DOI: 10.1039/b809517p] [Cited by in Crossref: 185] [Cited by in F6Publishing: 116] [Article Influence: 13.2] [Reference Citation Analysis]
143 Teng Z, Cao S, Li W, Yang L, Shi W, Wang Y, Wu J, Bin J. A micrometer-sized ultrasound contrast agent with nanometer-scale polygonal patterning surfaces. J Med Ultrason (2001) 2014;41:421-9. [PMID: 27278022 DOI: 10.1007/s10396-014-0543-y] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
144 Yu T, Fan X, Xiong S, Hu K, Wang Z. Microbubbles assist goat liver ablation by high intensity focused ultrasound. Eur Radiol. 2006;16:1557-1563. [PMID: 16541226 DOI: 10.1007/s00330-006-0176-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
145 Oliveira S, Heukers R, Sornkom J, Kok RJ, van Bergen en Henegouwen PM. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release 2013;172:607-17. [DOI: 10.1016/j.jconrel.2013.08.298] [Cited by in Crossref: 130] [Cited by in F6Publishing: 126] [Article Influence: 14.4] [Reference Citation Analysis]
146 Jun HM, Oh MJ, Lee JH, Yoo PJ. Microfluidic Synthesis of Carbon Nanotube-Networked Solid-Shelled Bubbles. Langmuir 2020;36:948-55. [PMID: 31917578 DOI: 10.1021/acs.langmuir.9b03268] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
147 Hu Y, Liu C, Muyldermans S. Nanobody-Based Delivery Systems for Diagnosis and Targeted Tumor Therapy. Front Immunol 2017;8:1442. [PMID: 29163515 DOI: 10.3389/fimmu.2017.01442] [Cited by in Crossref: 66] [Cited by in F6Publishing: 63] [Article Influence: 13.2] [Reference Citation Analysis]
148 Bader KB, Bouchoux G, Holland CK. Sonothrombolysis. Adv Exp Med Biol 2016;880:339-62. [PMID: 26486347 DOI: 10.1007/978-3-319-22536-4_19] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
149 Wang Q, Manmi K, Calvisi ML. Numerical modeling of the 3D dynamics of ultrasound contrast agent microbubbles using the boundary integral method. Physics of Fluids 2015;27:022104. [DOI: 10.1063/1.4908045] [Cited by in Crossref: 30] [Article Influence: 4.3] [Reference Citation Analysis]
150 Qiao Y, Cao H, Zhang S, Yin H, Wan M. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field. Ultrasonics Sonochemistry 2013;20:162-70. [DOI: 10.1016/j.ultsonch.2012.06.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
151 Song W, Luo Y, Zhao Y, Liu X, Zhao J, Luo J, Zhang Q, Ran H, Wang Z, Guo D. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine 2017;12:991-1009. [DOI: 10.2217/nnm-2017-0027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
152 Weber MW, Shandas R. Computational fluid dynamics analysis of microbubble formation in microfluidic flow-focusing devices. Microfluid Nanofluid 2007;3:195-206. [DOI: 10.1007/s10404-006-0120-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
153 Kubenko V, Yanchevskyi I. Acoustic field effect on encapsulated spherical drop located in liquid filled cylindrical vessel. Wave Motion 2021;106:102801. [DOI: 10.1016/j.wavemoti.2021.102801] [Reference Citation Analysis]
154 Kim M, Lee JH, Kim SE, Kang SS, Tae G. Nanosized Ultrasound Enhanced-Contrast Agent for in Vivo Tumor Imaging via Intravenous Injection. ACS Appl Mater Interfaces 2016;8:8409-18. [DOI: 10.1021/acsami.6b02115] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
155 Stride E, Segers T, Lajoinie G, Cherkaoui S, Bettinger T, Versluis M, Borden M. Microbubble Agents: New Directions. Ultrasound in Medicine & Biology 2020;46:1326-43. [DOI: 10.1016/j.ultrasmedbio.2020.01.027] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 17.5] [Reference Citation Analysis]
156 Kruse DE, Ferrara KW. A new imaging strategy using wideband transient response of ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52:1320-9. [PMID: 16245601 DOI: 10.1109/tuffc.2005.1509790] [Cited by in Crossref: 72] [Cited by in F6Publishing: 33] [Article Influence: 4.2] [Reference Citation Analysis]
157 Nie X, Wang Y, Ran X, Wu J, Wei R, Yan W. Preparation of Nanoparticle-Loaded Microbubbles via an Electrohydrodynamic Atomization Process. Applied Sciences 2022;12:3621. [DOI: 10.3390/app12073621] [Reference Citation Analysis]
158 Das D, Sivasubramanian K, Yang C, Pramanik M. On-chip generation of microbubbles in photoacoustic contrast agents for dual modal ultrasound/photoacoustic in vivo animal imaging. Sci Rep 2018;8:6401. [PMID: 29686407 DOI: 10.1038/s41598-018-24713-4] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
159 Buchner Santos E, Morris JK, Glynos E, Sboros V, Koutsos V. Nanomechanical Properties of Phospholipid Microbubbles. Langmuir 2012;28:5753-60. [DOI: 10.1021/la204801u] [Cited by in Crossref: 39] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
160 Eames I. New perspectives on dispersed multiphase flows. Introduction. Philos Trans A Math Phys Eng Sci 2008;366:2095-102. [PMID: 18348967 DOI: 10.1098/rsta.2008.0028] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
161 Borden MA. Lipid-Coated Nanodrops and Microbubbles. Handbook of Ultrasonics and Sonochemistry. Singapore: Springer; 2016. pp. 1075-100. [DOI: 10.1007/978-981-287-278-4_26] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
162 Jin Y, Wang J, Ke H, Wang S, Dai Z. Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 2013;34:4794-802. [PMID: 23557859 DOI: 10.1016/j.biomaterials.2013.03.027] [Cited by in Crossref: 139] [Cited by in F6Publishing: 121] [Article Influence: 15.4] [Reference Citation Analysis]
163 Ibsen S, Mora R, Shi G, Schutt C, Cui W, Benchimol M, Serra V, Esener S. Removal of ligand-bound liposomes from cell surfaces by microbubbles exposed to ultrasound. J Biol Phys 2017;43:493-510. [PMID: 29124623 DOI: 10.1007/s10867-017-9465-4] [Reference Citation Analysis]
164 Sciallero C, Crocco M, Trucco A. A method for estimating the microbubble concentration in contrast-enhanced ultrasound imaging. Meas Sci Technol 2011;22:114009. [DOI: 10.1088/0957-0233/22/11/114009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
165 Farook U, Stride E, Edirisinghe MJ, Moaleji R. Microbubbling by co-axial electrohydrodynamic atomization. Med Bio Eng Comput 2007;45:781-9. [DOI: 10.1007/s11517-007-0210-1] [Cited by in Crossref: 60] [Cited by in F6Publishing: 54] [Article Influence: 4.0] [Reference Citation Analysis]
166 Stride E. The influence of surface adsorption on microbubble dynamics. Philos Trans A Math Phys Eng Sci 2008;366:2103-15. [PMID: 18348975 DOI: 10.1098/rsta.2008.0001] [Cited by in Crossref: 57] [Cited by in F6Publishing: 41] [Article Influence: 4.1] [Reference Citation Analysis]
167 Peyman SA, Abou-saleh RH, Mclaughlan JR, Ingram N, Johnson BRG, Critchley K, Freear S, Evans JA, Markham AF, Coletta PL, Evans SD. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles. Lab Chip 2012;12:4544. [DOI: 10.1039/c2lc40634a] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
168 Zhang N, Li J, Hou R, Zhang J, Wang P, Liu X, Zhang Z. Bubble-generating nano-lipid carriers for ultrasound/CT imaging-guided efficient tumor therapy. Int J Pharm 2017;534:251-62. [PMID: 28803939 DOI: 10.1016/j.ijpharm.2017.07.081] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
169 Barmin RA, Rudakovskaya PG, Gusliakova OI, Sindeeva OA, Prikhozhdenko ES, Maksimova EA, Obukhova EN, Chernyshev VS, Khlebtsov BN, Solovev AA, Sukhorukov GB, Gorin DA. Air-Filled Bubbles Stabilized by Gold Nanoparticle/Photodynamic Dye Hybrid Structures for Theranostics. Nanomaterials (Basel) 2021;11:415. [PMID: 33562017 DOI: 10.3390/nano11020415] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
170 Duvshani-eshet M, Adam D, Machluf M. The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound. Journal of Controlled Release 2006;112:156-66. [DOI: 10.1016/j.jconrel.2006.02.013] [Cited by in Crossref: 63] [Cited by in F6Publishing: 51] [Article Influence: 3.9] [Reference Citation Analysis]