BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sirsi S, Borden M. Microbubble Compositions, Properties and Biomedical Applications. Bubble Sci Eng Technol 2009;1:3-17. [PMID: 20574549 DOI: 10.1179/175889709X446507] [Cited by in Crossref: 312] [Cited by in F6Publishing: 112] [Article Influence: 24.0] [Reference Citation Analysis]
Number Citing Articles
1 Ambika Rajendran M. Ultrasound-guided Microbubble in the Treatment of Cancer: A Mini Narrative Review. Cureus 2018;10:e3256. [PMID: 30416906 DOI: 10.7759/cureus.3256] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
2 Gormley CA, Keenan BJ, Buczek-Thomas JA, Pessoa ACSN, Xu J, Monti F, Tabeling P, Holt RG, Nagy JO, Wong JY. Fibrin-Targeted Polymerized Shell Microbubbles as Potential Theranostic Agents for Surgical Adhesions. Langmuir 2019;35:10061-7. [PMID: 30681875 DOI: 10.1021/acs.langmuir.8b03692] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
3 Browning RJ, Aron M, Booth A, Rademeyer P, Wing S, Brans V, Shrivastava S, Carugo D, Stride E. Spectral Imaging for Microbubble Characterization. Langmuir 2020;36:609-17. [PMID: 31855435 DOI: 10.1021/acs.langmuir.9b03828] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zahiri M, Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Theranostic nanobubbles towards smart nanomedicines. J Control Release 2021;339:164-94. [PMID: 34592384 DOI: 10.1016/j.jconrel.2021.09.032] [Reference Citation Analysis]
5 Oezdemir I, Peng J, Ghosh D, Sirsi S, Mineo C, Shaul PW, Hoyt K. Multiscale and morphological analysis of microvascular patterns depicted in contrast-enhanced ultrasound images. J Med Imaging (Bellingham) 2020;7:034001. [PMID: 32509915 DOI: 10.1117/1.JMI.7.3.034001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Jung O, Thomas A, Burks SR, Dustin ML, Frank JA, Ferrer M, Stride E. Neuroinflammation associated with ultrasound-mediated permeabilization of the blood–brain barrier. Trends in Neurosciences 2022. [DOI: 10.1016/j.tins.2022.03.003] [Reference Citation Analysis]
7 Zhou Y, Sun J, Yang X. Molecular Imaging-Guided Interventional Hyperthermia in Treatment of Breast Cancer. Biomed Res Int 2015;2015:505269. [PMID: 26491673 DOI: 10.1155/2015/505269] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021;320:H1566-600. [PMID: 33385323 DOI: 10.1152/ajpheart.00719.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Melich R, Valour J, Urbaniak S, Padilla F, Charcosset C. Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019;560:233-43. [DOI: 10.1016/j.colsurfa.2018.09.058] [Cited by in Crossref: 5] [Article Influence: 1.7] [Reference Citation Analysis]
10 Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2012;2:1208-22. [PMID: 23382777 DOI: 10.7150/thno.4306] [Cited by in Crossref: 123] [Cited by in F6Publishing: 125] [Article Influence: 12.3] [Reference Citation Analysis]
11 Kontaxi G, Stergiou YG, Mouza AA. Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid. Micromachines (Basel) 2021;12:71. [PMID: 33440872 DOI: 10.3390/mi12010071] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Liao AH, Hsieh YL, Ho HC, Chen HK, Lin YC, Shih CP, Chen HC, Kuo CY, Lu YJ, Wang CH. Effects of microbubble size on ultrasound-mediated gene transfection in auditory cells. Biomed Res Int 2014;2014:840852. [PMID: 25254216 DOI: 10.1155/2014/840852] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
13 Jang Y, Jang WS, Gao C, Shim TS, Crocker JC, Hammer DA, Lee D. Tuning the Mechanical Properties of Recombinant Protein-Stabilized Gas Bubbles Using Triblock Copolymers. ACS Macro Lett 2016;5:371-6. [PMID: 35614706 DOI: 10.1021/acsmacrolett.6b00057] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Dubey D, Christiansen MG, Vizovisek M, Gebhardt S, Feike J, Schuerle S. Engineering Responsive Ultrasound Contrast Agents Through Crosslinked Networks on Lipid-Shelled Microbubbles. Small 2022;:e2107143. [PMID: 35064638 DOI: 10.1002/smll.202107143] [Reference Citation Analysis]
15 Fix SM, Novell A, Yun Y, Dayton PA, Arena CB. An evaluation of the sonoporation potential of low-boiling point phase-change ultrasound contrast agents in vitro. J Ther Ultrasound 2017;5:7. [PMID: 28127427 DOI: 10.1186/s40349-017-0085-z] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 5.2] [Reference Citation Analysis]
16 Simpson K, Wonnacott A, Fraser DJ, Bowen T. MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy. Curr Diab Rep 2016;16:35. [PMID: 26973290 DOI: 10.1007/s11892-016-0724-8] [Cited by in Crossref: 90] [Cited by in F6Publishing: 83] [Article Influence: 15.0] [Reference Citation Analysis]
17 Miller DB, O'Callaghan JP. New horizons for focused ultrasound (FUS) - therapeutic applications in neurodegenerative diseases. Metabolism 2017;69S:S3-7. [PMID: 28159329 DOI: 10.1016/j.metabol.2017.01.012] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
18 Novell A, Kamimura HAS, Cafarelli A, Gerstenmayer M, Flament J, Valette J, Agou P, Conti A, Selingue E, Aron Badin R, Hantraye P, Larrat B. A new safety index based on intrapulse monitoring of ultra-harmonic cavitation during ultrasound-induced blood-brain barrier opening procedures. Sci Rep 2020;10:10088. [PMID: 32572103 DOI: 10.1038/s41598-020-66994-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
19 Langeveld SAG, Schwieger C, Beekers I, Blaffert J, van Rooij T, Blume A, Kooiman K. Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers. Langmuir 2020;36:3221-33. [PMID: 32109064 DOI: 10.1021/acs.langmuir.9b03912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
20 Lv W, Fan F, Wang Y, Gonzalez-Fernandez E, Wang C, Yang L, Booz GW, Roman RJ. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol Genomics 2018;50:20-34. [PMID: 29127220 DOI: 10.1152/physiolgenomics.00039.2017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 8.6] [Reference Citation Analysis]
21 Wang Q, Manmi K, Liu KK. Cell mechanics in biomedical cavitation. Interface Focus 2015;5:20150018. [PMID: 26442142 DOI: 10.1098/rsfs.2015.0018] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
22 Chattaraj R, Hammer DA, Lee D, Sehgal CM. Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow. Ultrasound Med Biol 2021;47:2676-91. [PMID: 34112553 DOI: 10.1016/j.ultrasmedbio.2021.04.025] [Reference Citation Analysis]
23 Hadinger KP, Marshalek JP, Sheeran PS, Dayton PA, Matsunaga TO. Optimization of Phase-Change Contrast Agents for Targeting MDA-MB-231 Breast Cancer Cells. Ultrasound Med Biol 2018;44:2728-38. [PMID: 30228045 DOI: 10.1016/j.ultrasmedbio.2018.08.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
24 Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016;97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Cited by in Crossref: 94] [Cited by in F6Publishing: 86] [Article Influence: 15.7] [Reference Citation Analysis]
25 Leinenga G, Langton C, Nisbet R, Götz J. Ultrasound treatment of neurological diseases--current and emerging applications. Nat Rev Neurol 2016;12:161-74. [PMID: 26891768 DOI: 10.1038/nrneurol.2016.13] [Cited by in Crossref: 119] [Cited by in F6Publishing: 104] [Article Influence: 19.8] [Reference Citation Analysis]
26 Hani U, M. YB, Wahab S, Siddiqua A, Osmani RAM, Rahamathulla M. A Comprehensive Review of Current Perspectives on Novel Drug Delivery Systems and Approaches for Lung Cancer Management. J Pharm Innov. [DOI: 10.1007/s12247-021-09582-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Arena CB, Novell A, Sheeran PS, Puett C, Moyer LC, Dayton PA. Dual-frequency acoustic droplet vaporization detection for medical imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2015;62:1623-33. [PMID: 26415125 DOI: 10.1109/TUFFC.2014.006883] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
28 Ghosh D, Xiong F, Sirsi SR, Shaul PW, Mattrey RF, Hoyt K. Toward optimization of in vivo super-resolution ultrasound imaging using size-selected microbubble contrast agents. Med Phys 2017;44:6304-13. [PMID: 28975635 DOI: 10.1002/mp.12606] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 5.6] [Reference Citation Analysis]
29 Hull TD, Agarwal A, Hoyt K. New Ultrasound Techniques Promise Further Advances in AKI and CKD. J Am Soc Nephrol 2017;28:3452-60. [PMID: 28923914 DOI: 10.1681/ASN.2017060647] [Cited by in Crossref: 19] [Cited by in F6Publishing: 5] [Article Influence: 3.8] [Reference Citation Analysis]
30 Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. Angewandte Chemie. [DOI: 10.1002/ange.202112218] [Reference Citation Analysis]
31 Chandan R, Banerjee R. Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: a platform for ultrasound responsive image-guided drug delivery. Sci Rep 2018;8:2624. [PMID: 29422676 DOI: 10.1038/s41598-018-21084-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
32 LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol 2020;13:613-28. [PMID: 32237219 DOI: 10.1111/1751-7915.13471] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
33 Zhang W, Shi Y, Abd Shukor S, Vijayakumaran A, Vlatakis S, Wright M, Thanou M. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. Nanoscale 2022. [PMID: 35166273 DOI: 10.1039/d1nr07882h] [Reference Citation Analysis]
34 David Jose A, Wu Z, Sunil Thakur S. A comprehensive update of micro- and nanobubbles as theranostics in oncology. Eur J Pharm Biopharm 2022:S0939-6411(22)00029-7. [PMID: 35181491 DOI: 10.1016/j.ejpb.2022.02.008] [Reference Citation Analysis]
35 Pellow C, Abenojar EC, Exner AA, Zheng G, Goertz DE. Concurrent visual and acoustic tracking of passive and active delivery of nanobubbles to tumors. Theranostics 2020;10:11690-706. [PMID: 33052241 DOI: 10.7150/thno.51316] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
36 Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015;4:193-205. [PMID: 27512682 DOI: 10.2147/OV.S66097] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
37 Ogończyk D, Siek M, Garstecki P. Microfluidic formulation of pectin microbeads for encapsulation and controlled release of nanoparticles. Biomicrofluidics 2011;5:13405. [PMID: 21522495 DOI: 10.1063/1.3569944] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
38 Chattaraj R, Hwang M, Zemerov SD, Dmochowski IJ, Hammer DA, Lee D, Sehgal CM. Ultrasound Responsive Noble Gas Microbubbles for Applications in Image-Guided Gas Delivery. Adv Healthc Mater 2020;9:e1901721. [PMID: 32207250 DOI: 10.1002/adhm.201901721] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
39 Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019;138:259-75. [PMID: 30947810 DOI: 10.1016/j.addr.2018.10.012] [Cited by in Crossref: 90] [Cited by in F6Publishing: 74] [Article Influence: 30.0] [Reference Citation Analysis]
40 Esmaeili J, Rezaei FS, Beram FM, Barati A. Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon 2020;6:e04189. [PMID: 32577567 DOI: 10.1016/j.heliyon.2020.e04189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
41 Khan MS, Hwang J, Lee K, Choi Y, Seo Y, Jeon H, Hong JW, Choi J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel) 2019;11:E1464. [PMID: 31569523 DOI: 10.3390/cancers11101464] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
42 Maksimova EA, Barmin RA, Rudakovskaya PG, Sindeeva OA, Prikhozhdenko ES, Yashchenok AM, Khlebtsov BN, Solovev AA, Huang G, Mei Y, Kanti Dey K, Gorin DA. Air-Filled Microbubbles Based on Albumin Functionalized with Gold Nanocages and Zinc Phthalocyanine for Multimodal Imaging. Micromachines (Basel) 2021;12:1161. [PMID: 34683212 DOI: 10.3390/mi12101161] [Reference Citation Analysis]
43 Chen CC, Sirsi SR, Homma S, Borden MA. Effect of surface architecture on in vivo ultrasound contrast persistence of targeted size-selected microbubbles. Ultrasound Med Biol 2012;38:492-503. [PMID: 22305060 DOI: 10.1016/j.ultrasmedbio.2011.12.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
44 Helfield B, Zou Y, Matsuura N. Acoustically-Stimulated Nanobubbles: Opportunities in Medical Ultrasound Imaging and Therapy. Front Phys 2021;9:654374. [DOI: 10.3389/fphy.2021.654374] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
45 Jugniot N, Bam R, Meuillet EJ, Unger EC, Paulmurugan R. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioeng Transl Med 2021;6:e10183. [PMID: 33532585 DOI: 10.1002/btm2.10183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
46 Toumia Y, Miceli R, Domenici F, Heymans SV, Carlier B, Cociorb M, Oddo L, Rossi P, D'Angellilo RM, Sterpin E, D'Agostino E, Van Den Abeele K, D'hooge J, Paradossi G. Ultrasound-assisted investigation of photon triggered vaporization of poly(vinylalcohol) phase-change nanodroplets: A preliminary concept study with dosimetry perspective. Phys Med 2021;89:232-42. [PMID: 34425514 DOI: 10.1016/j.ejmp.2021.08.006] [Reference Citation Analysis]
47 Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 2014;72:3-14. [PMID: 24389162 DOI: 10.1016/j.addr.2013.12.010] [Cited by in Crossref: 276] [Cited by in F6Publishing: 254] [Article Influence: 34.5] [Reference Citation Analysis]
48 Fekri F, Abousawan J, Bautista S, Orofiamma L, Dayam RM, Antonescu CN, Karshafian R. Targeted enhancement of flotillin-dependent endocytosis augments cellular uptake and impact of cytotoxic drugs. Sci Rep 2019;9:17768. [PMID: 31780775 DOI: 10.1038/s41598-019-54062-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
49 Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014;72:49-64. [PMID: 24270006 DOI: 10.1016/j.addr.2013.11.008] [Cited by in Crossref: 433] [Cited by in F6Publishing: 387] [Article Influence: 54.1] [Reference Citation Analysis]
50 Chen R, Yu H(, Zhu L, Patil RM, Lee T. Spatial and temporal scaling of unequal microbubble coalescence. AIChE J 2017;63:1441-50. [DOI: 10.1002/aic.15504] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
51 Ton N, Goncin U, Panahifar A, Webb MA, Chapman D, Wiebe S, Machtaler S. Developing a Microbubble-Based Contrast Agent for Synchrotron Multiple-Image Radiography. Mol Imaging Biol 2022. [PMID: 35137326 DOI: 10.1007/s11307-022-01705-5] [Reference Citation Analysis]
52 Shi D, Nguyen DV, Maaloum M, Gallani JL, Felder-Flesch D, Krafft MP. Interfacial Behavior of Oligo(Ethylene Glycol) Dendrons Spread Alone and in Combination with a Phospholipid as Langmuir Monolayers at the Air/Water Interface. Molecules 2019;24:E4114. [PMID: 31739495 DOI: 10.3390/molecules24224114] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 Lv W, Liu Y, Li S, Lv L, Lu H, Xin H. Advances of nano drug delivery system for the theranostics of ischemic stroke. J Nanobiotechnology 2022;20:248. [PMID: 35641956 DOI: 10.1186/s12951-022-01450-5] [Reference Citation Analysis]
54 Zimmerman KA, Xing D, Pallero MA, Lu A, Ikawa M, Black L, Hoyt KL, Kabarowski JH, Michalak M, Murphy-Ullrich JE. Calreticulin Regulates Neointima Formation and Collagen Deposition following Carotid Artery Ligation. J Vasc Res 2015;52:306-20. [PMID: 26910059 DOI: 10.1159/000443884] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
55 Huang P, Zhang Y, Chen J, Shentu W, Sun Y, Yang Z, Liang T, Chen S, Pu Z. Enhanced antitumor efficacy of ultrasonic cavitation with up-sized microbubbles in pancreatic cancer. Oncotarget 2015;6:20241-51. [PMID: 26036312 DOI: 10.18632/oncotarget.4048] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
56 Stewart F, Cummins G, Turcanu MV, Cox BF, Prescott A, Clutton E, Newton IP, Desmulliez MPY, Thanou M, Mulvana H, Cochran S, Näthke I. Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Sci Rep 2021;11:2584. [PMID: 33510366 DOI: 10.1038/s41598-021-82240-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Yao ZC, Yuan Q, Ahmad Z, Huang J, Li JS, Chang MW. Controlled Morphing of Microbubbles to Beaded Nanofibers via Electrically Forced Thin Film Stretching. Polymers (Basel) 2017;9:E265. [PMID: 30970941 DOI: 10.3390/polym9070265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
58 Chen JL, Dhanaliwala AH, Dixon AJ, Klibanov AL, Hossack JA. Synthesis and characterization of transiently stable albumin-coated microbubbles via a flow-focusing microfluidic device. Ultrasound Med Biol 2014;40:400-9. [PMID: 24342914 DOI: 10.1016/j.ultrasmedbio.2013.09.024] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
59 Mullin LB, Phillips LC, Dayton PA. Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:65-77. [PMID: 23287914 DOI: 10.1109/tuffc.2013.2538] [Cited by in Crossref: 28] [Cited by in F6Publishing: 10] [Article Influence: 3.1] [Reference Citation Analysis]
60 Karakatsani ME, Kugelman T, Ji R, Murillo M, Wang S, Niimi Y, Small SA, Duff KE, Konofagou EE. Unilateral Focused Ultrasound-Induced Blood-Brain Barrier Opening Reduces Phosphorylated Tau from The rTg4510 Mouse Model. Theranostics 2019;9:5396-411. [PMID: 31410223 DOI: 10.7150/thno.28717] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 10.3] [Reference Citation Analysis]
61 Xie Y, Wang J, Wang J, Hu Z, Hariri A, Tu N, Krug KA, Burkart MD, Gianneschi NC, Jokerst JV, Rinehart JD. Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. J Mater Chem B 2019;7:4833-42. [PMID: 31389967 DOI: 10.1039/c9tb00928k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
62 Calderó G, Paradossi G. Ultrasound/radiation-responsive emulsions. Current Opinion in Colloid & Interface Science 2020;49:118-32. [DOI: 10.1016/j.cocis.2020.08.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
63 Fu JW, Lin YS, Gan SL, Li YR, Wang Y, Feng ST, Li H, Zhou GF. Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors. Contrast Media Mol Imaging 2019;2019:3145647. [PMID: 31360144 DOI: 10.1155/2019/3145647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
64 Hall RL, Juan-Sing ZD, Hoyt K, Sirsi SR. Formulation and Characterization of Chemically Cross-linked Microbubble Clusters. Langmuir 2019;35:10977-86. [PMID: 31310715 DOI: 10.1021/acs.langmuir.9b00475] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
65 Yang H, Xiong X, Zhang L, Wu C, Liu Y. Adhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow. Int J Nanomedicine 2011;6:2043-51. [PMID: 21976979 DOI: 10.2147/IJN.S24808] [Cited by in Crossref: 2] [Cited by in F6Publishing: 14] [Article Influence: 0.2] [Reference Citation Analysis]
66 Sirsi SR, Hernandez SL, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel JJ, Yamashiro DJ, Borden MA. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J Control Release. 2012;157:224-234. [PMID: 21945680 DOI: 10.1016/j.jconrel.2011.09.071] [Cited by in Crossref: 72] [Cited by in F6Publishing: 70] [Article Influence: 6.5] [Reference Citation Analysis]
67 Caudwell JA, Tinkler JM, Johnson BR, Mcdowall KJ, Alsulaimani F, Tiede C, Tomlinson DC, Freear S, Turnbull WB, Evans SD, Sandoe JA. Protein-conjugated microbubbles for the selective targeting of S. aureus biofilms. Biofilm 2022;4:100074. [DOI: 10.1016/j.bioflm.2022.100074] [Reference Citation Analysis]
68 Lima EG, Durney KM, Sirsi SR, Nover AB, Ateshian GA, Borden MA, Hung CT. Microbubbles as biocompatible porogens for hydrogel scaffolds. Acta Biomater 2012;8:4334-41. [PMID: 22868194 DOI: 10.1016/j.actbio.2012.07.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
69 Liu M, Dasgupta A, Koczera P, Schipper S, Rommel D, Shi Y, Kiessling F, Lammers T. Drug Loading in Poly(butyl cyanoacrylate)-Based Polymeric Microbubbles. Mol Pharm 2020;17:2840-8. [PMID: 32589435 DOI: 10.1021/acs.molpharmaceut.0c00242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Zhang Z, Chen Z, Fan L, Landry T, Brown J, Yu Z, Yin S, Wang J. Ultrasound-microbubble cavitation facilitates adeno-associated virus mediated cochlear gene transfection across the round-window membrane. Bioeng Transl Med 2021;6:e10189. [PMID: 33532589 DOI: 10.1002/btm2.10189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
71 Chen CC, Borden MA. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles. Langmuir 2010;26:13183-94. [PMID: 20695557 DOI: 10.1021/la101796p] [Cited by in Crossref: 37] [Cited by in F6Publishing: 41] [Article Influence: 3.1] [Reference Citation Analysis]
72 Qureshi AI, Saleem MA, Ahrar A, Raja F. Imaging of the Vasa Nervorum Using Contrast-Enhanced Ultrasound: Contrast-Enhanced Ultrasound Imaging of Vasa Nervorum. J Neuroimaging 2017;27:583-8. [DOI: 10.1111/jon.12429] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
73 Pouliopoulos AN, Jimenez DA, Frank A, Robertson A, Zhang L, Kline-Schoder AR, Bhaskar V, Harpale M, Caso E, Papapanou N, Anderson R, Li R, Konofagou EE. Temporal stability of lipid-shelled microbubbles during acoustically-mediated blood-brain barrier opening. Front Phys 2020;8:137. [PMID: 32457896 DOI: 10.3389/fphy.2020.00137] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
74 Koczera P, Appold L, Shi Y, Liu M, Dasgupta A, Pathak V, Ojha T, Fokong S, Wu Z, van Zandvoort M, Iranzo O, Kuehne AJC, Pich A, Kiessling F, Lammers T. PBCA-based polymeric microbubbles for molecular imaging and drug delivery. J Control Release 2017;259:128-35. [PMID: 28279799 DOI: 10.1016/j.jconrel.2017.03.006] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
75 Karakatsani ME, Wang S, Samiotaki G, Kugelman T, Olumolade OO, Acosta C, Sun T, Han Y, Kamimura HAS, Jackson-Lewis V, Przedborski S, Konofagou E. Amelioration of the nigrostriatal pathway facilitated by ultrasound-mediated neurotrophic delivery in early Parkinson's disease. J Control Release 2019;303:289-301. [PMID: 30953664 DOI: 10.1016/j.jconrel.2019.03.030] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
76 Khairalseed M, Oezdemir I, Hoyt K. Contrast-enhanced ultrasound imaging using pulse inversion spectral deconvolution. J Acoust Soc Am 2019;146:2466. [PMID: 31671995 DOI: 10.1121/1.5129115] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
77 Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, Moon JJ. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng 2019;3:768-82. [PMID: 31406259 DOI: 10.1038/s41551-019-0436-x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 16.3] [Reference Citation Analysis]
78 Xiang X, Liu H, Wang L, Zhu B, Ma L, Du F, Li L, Qiu L. Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model. J Cell Mol Med 2020;24:10816-29. [PMID: 33140920 DOI: 10.1111/jcmm.15706] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
79 Goncin U, Bernhard W, Curiel L, Geyer CR, Machtaler S. Rapid Copper-free Click Conjugation to Lipid-Shelled Microbubbles for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Bioconjugate Chem . [DOI: 10.1021/acs.bioconjchem.2c00104] [Reference Citation Analysis]
80 Liu M, Dasgupta A, Qu N, Rama E, Kiessling F, Lammers T. Strategies to Maximize Anthracycline Drug Loading in Albumin Microbubbles. ACS Biomater Sci Eng 2021. [PMID: 34931809 DOI: 10.1021/acsbiomaterials.1c01203] [Reference Citation Analysis]
81 Benchimol MJ, Hsu MJ, Schutt CE, Hall DJ, Mattrey RF, Esener SC. Phospholipid/Carbocyanine Dye-Shelled Microbubbles as Ultrasound-Modulated Fluorescent Contrast Agents. Soft Matter 2013;9:2384-8. [PMID: 23526919 DOI: 10.1039/C2SM26900G] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
82 Lee JY, Carugo D, Crake C, Owen J, de Saint Victor M, Seth A, Coussios C, Stride E. Nanoparticle-Loaded Protein-Polymer Nanodroplets for Improved Stability and Conversion Efficiency in Ultrasound Imaging and Drug Delivery. Adv Mater 2015;27:5484-92. [PMID: 26265592 DOI: 10.1002/adma.201502022] [Cited by in Crossref: 99] [Cited by in F6Publishing: 94] [Article Influence: 14.1] [Reference Citation Analysis]
83 Lee H, Kim H, Han H, Lee M, Lee S, Yoo H, Chang JH, Kim H. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed Eng Lett 2017;7:59-69. [PMID: 30603152 DOI: 10.1007/s13534-017-0016-5] [Cited by in Crossref: 28] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
84 Sridharan A, Eisenbrey JR, Forsberg F, Lorenz N, Steffgen L, Ntoulia A. Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist. Pediatr Radiol 2021. [PMID: 34117892 DOI: 10.1007/s00247-021-05080-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
85 Xiong F, Nirupama S, Sirsi SR, Lacko A, Hoyt K. Ultrasound-Stimulated Drug Delivery Using Therapeutic Reconstituted High-Density Lipoprotein Nanoparticles. Nanotheranostics 2017;1:440-9. [PMID: 29188177 DOI: 10.7150/ntno.21905] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
86 Wang Y, Thanyamanta W, Bulger C, Bose N. Experimental study to make gas bubbles as proxies for oil droplets to test AUV detection of oil plumes. Applied Ocean Research 2022;121:103080. [DOI: 10.1016/j.apor.2022.103080] [Reference Citation Analysis]
87 Novell A, Arena CB, Oralkan O, Dayton PA. Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer. J Acoust Soc Am 2016;139:3193. [PMID: 27369143 DOI: 10.1121/1.4953580] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
88 Roberts VH, Frias AE. Contrast-enhanced ultrasound for the assessment of placental development and function. Biotechniques 2020;69:392-9. [PMID: 32883092 DOI: 10.2144/btn-2020-0069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
89 Bing C, Hong Y, Hernandez C, Rich M, Cheng B, Munaweera I, Szczepanski D, Xi Y, Bolding M, Exner A, Chopra R. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Sci Rep 2018;8:7986. [PMID: 29789589 DOI: 10.1038/s41598-018-26330-7] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
90 Beguin E, Bau L, Shrivastava S, Stride E. Comparing Strategies for Magnetic Functionalization of Microbubbles. ACS Appl Mater Interfaces 2019;11:1829-40. [DOI: 10.1021/acsami.8b18418] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
91 Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res 2013;118:1-59. [PMID: 23768509 DOI: 10.1016/B978-0-12-407173-5.00002-9] [Cited by in Crossref: 46] [Cited by in F6Publishing: 20] [Article Influence: 5.1] [Reference Citation Analysis]
92 Zhang Q, Pang Y, Schiffbauer J, Jemcov A, Chang HC, Lee E, Luo T. Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating. ACS Appl Mater Interfaces 2019;11:48525-32. [PMID: 31794181 DOI: 10.1021/acsami.9b16067] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
93 Ghosh D, Peng J, Brown K, Sirsi S, Mineo C, Shaul PW, Hoyt K. Super-Resolution Ultrasound Imaging of Skeletal Muscle Microvascular Dysfunction in an Animal Model of Type 2 Diabetes. J Ultrasound Med 2019;38:2589-99. [PMID: 30706511 DOI: 10.1002/jum.14956] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
94 Kovalenko A, Polavarapu P, Pourroy G, Waton G, Krafft MP. pH-controlled microbubble shell formation and stabilization. Langmuir 2014;30:6339-47. [PMID: 24821482 DOI: 10.1021/la5007023] [Cited by in Crossref: 6] [Article Influence: 0.8] [Reference Citation Analysis]
95 Patel JV, Kessel D. Re: CO2 microbubble contrast enhancement in x-ray angiography. Clin Radiol 2013;68:1179-80. [PMID: 23896310 DOI: 10.1016/j.crad.2013.06.006] [Reference Citation Analysis]
96 Velroyen A, Bech M, Tapfer A, Yaroshenko A, Müller M, Paprottka P, Ingrisch M, Cyran CC, Auweter SD, Nikolaou K, Reiser MF, Pfeiffer F. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging. PLoS One 2015;10:e0129512. [PMID: 26134130 DOI: 10.1371/journal.pone.0129512] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
97 Batchelor DVB, Abou-Saleh RH, Coletta PL, McLaughlan JR, Peyman SA, Evans SD. Nested Nanobubbles for Ultrasound-Triggered Drug Release. ACS Appl Mater Interfaces 2020;12:29085-93. [PMID: 32501014 DOI: 10.1021/acsami.0c07022] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
98 Chen CC, Borden MA. The role of poly(ethylene glycol) brush architecture in complement activation on targeted microbubble surfaces. Biomaterials 2011;32:6579-87. [PMID: 21683439 DOI: 10.1016/j.biomaterials.2011.05.027] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 4.3] [Reference Citation Analysis]
99 Nie X, Wang Y, Ran X, Wu J, Wei R, Yan W. Preparation of Nanoparticle-Loaded Microbubbles via an Electrohydrodynamic Atomization Process. Applied Sciences 2022;12:3621. [DOI: 10.3390/app12073621] [Reference Citation Analysis]
100 D'Andrea A, Severini L, Domenici F, Dabagov S, Guglielmotti V, Hampai D, Micheli L, Placidi E, Titubante M, Mazzuca C, Paradossi G, Palleschi A. Ultrasound-Stimulated PVA Microbubbles for Adhesive Removal from Cellulose-Based Materials: A Groundbreaking Low-Impact Methodology. ACS Appl Mater Interfaces 2021;13:24207-17. [PMID: 33988378 DOI: 10.1021/acsami.1c01892] [Reference Citation Analysis]
101 Vince O, Peeters S, Johanssen VA, Gray M, Smart S, Sibson NR, Stride E. Microbubbles Containing Lysolipid Enhance Ultrasound-Mediated Blood-Brain Barrier Breakdown In Vivo. Adv Healthc Mater 2021;10:e2001343. [PMID: 33191662 DOI: 10.1002/adhm.202001343] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
102 Tzu-Yin W, Wilson KE, Machtaler S, Willmann JK. Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Curr Pharm Biotechnol 2013;14:743-52. [PMID: 24372231 DOI: 10.2174/1389201014666131226114611] [Cited by in Crossref: 43] [Cited by in F6Publishing: 54] [Article Influence: 5.4] [Reference Citation Analysis]
103 Gunay MS, Ozer AY, Chalon S. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease. Curr Neuropharmacol 2016;14:376-91. [PMID: 26714584 DOI: 10.2174/1570159x14666151230124904] [Cited by in Crossref: 26] [Cited by in F6Publishing: 8] [Article Influence: 4.3] [Reference Citation Analysis]
104 Paškevičiūtė M, Januškevičienė I, Sakalauskienė K, Raišutis R, Petrikaitė V. Evaluation of low-intensity pulsed ultrasound on doxorubicin delivery in 2D and 3D cancer cell cultures. Sci Rep 2020;10:16161. [PMID: 32999381 DOI: 10.1038/s41598-020-73204-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Krafft MP. Perfluoroalkyl chains as tools for film surface nano-patterning and soft microbubble engineering and decoration. Journal of the Taiwan Institute of Chemical Engineers 2014;45:3069-74. [DOI: 10.1016/j.jtice.2014.06.013] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
106 Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. Nano Today 2018;23:59-72. [PMID: 31186672 DOI: 10.1016/j.nantod.2018.11.001] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 12.0] [Reference Citation Analysis]
107 Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo HJ, Hong JW, Choi J. Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules 2018;23:E2210. [PMID: 30200336 DOI: 10.3390/molecules23092210] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 6.8] [Reference Citation Analysis]
108 Wang S, Samiotaki G, Olumolade O, Feshitan JA, Konofagou EE. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Ultrasound Med Biol 2014;40:130-7. [PMID: 24239362 DOI: 10.1016/j.ultrasmedbio.2013.09.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 4.7] [Reference Citation Analysis]
109 Langeveld SAG, Beekers I, Collado-Lara G, van der Steen AFW, de Jong N, Kooiman K. The Impact of Lipid Handling and Phase Distribution on the Acoustic Behavior of Microbubbles. Pharmaceutics 2021;13:119. [PMID: 33477843 DOI: 10.3390/pharmaceutics13010119] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
110 Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization. Int J Nanomedicine 2012;7:3309-18. [PMID: 22802689 DOI: 10.2147/IJN.S30912] [Cited by in Crossref: 66] [Cited by in F6Publishing: 23] [Article Influence: 6.6] [Reference Citation Analysis]
111 Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. Adv Mater 2021;33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 16.0] [Reference Citation Analysis]
112 Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 2014;72:15-27. [PMID: 24316070 DOI: 10.1016/j.addr.2013.11.013] [Cited by in Crossref: 126] [Cited by in F6Publishing: 121] [Article Influence: 15.8] [Reference Citation Analysis]
113 Parodi A, Rudzińska M, Deviatkin AA, Soond SM, Baldin AV, Zamyatnin AA Jr. Established and Emerging Strategies for Drug Delivery Across the Blood-Brain Barrier in Brain Cancer. Pharmaceutics 2019;11:E245. [PMID: 31137689 DOI: 10.3390/pharmaceutics11050245] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 8.7] [Reference Citation Analysis]
114 Patnaik SS, Simionescu DT, Goergen CJ, Hoyt K, Sirsi S, Finol EA. Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Ann Biomed Eng 2019;47:39-59. [PMID: 30298373 DOI: 10.1007/s10439-018-02145-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
115 Damiati S, Kompella UB, Damiati SA, Kodzius R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. Genes (Basel) 2018;9:E103. [PMID: 29462948 DOI: 10.3390/genes9020103] [Cited by in Crossref: 110] [Cited by in F6Publishing: 86] [Article Influence: 27.5] [Reference Citation Analysis]
116 Malik R, Pancholi K, Melzer A. Microbubble-liposome conjugate: Payload evaluation of potential theranostic vehicle. Nanobiomedicine (Rij) 2016;3:1849543516670806. [PMID: 29942387 DOI: 10.1177/1849543516670806] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
117 Ji R, Smith M, Niimi Y, Karakatsani ME, Murillo MF, Jackson-Lewis V, Przedborski S, Konofagou EE. Focused ultrasound enhanced intranasal delivery of brain derived neurotrophic factor produces neurorestorative effects in a Parkinson's disease mouse model. Sci Rep 2019;9:19402. [PMID: 31852909 DOI: 10.1038/s41598-019-55294-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
118 Bellary A, Villarreal A, Eslami R, Undseth QJ, Lec B, Defnet AM, Bagrodia N, Kandel JJ, Borden MA, Shaikh S, Chopra R, Laetsch TW, Delaney LJ, Shaw CM, Eisenbrey JR, Hernandez SL, Sirsi SR. Perfusion-guided sonopermeation of neuroblastoma: a novel strategy for monitoring and predicting liposomal doxorubicin uptake in vivo. Theranostics 2020;10:8143-61. [PMID: 32724463 DOI: 10.7150/thno.45903] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
119 Dauba A, Delalande A, Kamimura HAS, Conti A, Larrat B, Tsapis N, Novell A. Recent Advances on Ultrasound Contrast Agents for Blood-Brain Barrier Opening with Focused Ultrasound. Pharmaceutics 2020;12:E1125. [PMID: 33233374 DOI: 10.3390/pharmaceutics12111125] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
120 Basavarajappa L, Rijal G, Hoyt K. Multifocused Ultrasound Therapy for Controlled Microvascular Permeabilization and Improved Drug Delivery. IEEE Trans Ultrason Ferroelectr Freq Control 2021;68:961-8. [PMID: 32976098 DOI: 10.1109/TUFFC.2020.3026697] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
121 Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021;22:4804. [PMID: 33946583 DOI: 10.3390/ijms22094804] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
122 Sitta J, Howard CM. Applications of Ultrasound-Mediated Drug Delivery and Gene Therapy. Int J Mol Sci 2021;22:11491. [PMID: 34768922 DOI: 10.3390/ijms222111491] [Reference Citation Analysis]
123 Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Molecular Ultrasound Imaging of the Spinal Cord for the Detection of Acute Inflammation. Journal of Diagnostic Medical Sonography 2017;33:454-63. [DOI: 10.1177/8756479317729671] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
124 Kato R, Frusawa H. Microscopic Characterization of Individual Submicron Bubbles during the Layer-by-Layer Deposition: Towards Creating Smart Agents. Materials (Basel) 2015;8:4176-90. [PMID: 28793432 DOI: 10.3390/ma8074176] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
125 Sirsi SR, Fung C, Garg S, Tianning MY, Mountford PA, Borden MA. Lung surfactant microbubbles increase lipophilic drug payload for ultrasound-targeted delivery. Theranostics 2013;3:409-19. [PMID: 23781287 DOI: 10.7150/thno.5616] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
126 Zhang yajing, Wang minghao, Lei zhaokang, Mo runyang, 马嫣嫱, 莫润阳; Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119. . Acta Phys Sin 2022;0:0. [DOI: 10.7498/aps.71.20220847] [Reference Citation Analysis]
127 Fix SM, Koppolu BP, Novell A, Hopkins J, Kierski TM, Zaharoff DA, Dayton PA, Papadopoulou V. Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. Ultrasound Med Biol 2019;45:1762-76. [PMID: 31003709 DOI: 10.1016/j.ultrasmedbio.2019.02.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
128 Samiotaki G, Acosta C, Wang S, Konofagou EE. Enhanced delivery and bioactivity of the neurturin neurotrophic factor through focused ultrasound-mediated blood--brain barrier opening in vivo. J Cereb Blood Flow Metab 2015;35:611-22. [PMID: 25586140 DOI: 10.1038/jcbfm.2014.236] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 8.4] [Reference Citation Analysis]
129 Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. Nanomaterials (Basel) 2020;10:E383. [PMID: 32098406 DOI: 10.3390/nano10020383] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
130 Huang CH, Wang J, Yang J, Oviedo JP, Nam S, Trogler WC, Blair SL, Kim MJ, Kummel AC. Thickness and Sphericity Control of Hollow Hard Silica Shells through Iron (III) Doping: Low Threshold Ultrasound Contrast Agents. Adv Funct Mater 2019;29:1900893. [PMID: 34326713 DOI: 10.1002/adfm.201900893] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
131 Wheatley M, Cochran M. Ultrasound contrast agents. Journal of Drug Delivery Science and Technology 2013;23:57-72. [DOI: 10.1016/s1773-2247(13)50007-4] [Cited by in Crossref: 5] [Article Influence: 0.6] [Reference Citation Analysis]
132 Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S, Sueishi M. Sonoporation: Gene transfer using ultrasound. World J Methodol 2013; 3(4): 39-44 [PMID: 25237622 DOI: 10.5662/wjm.v3.i4.39] [Cited by in CrossRef: 48] [Cited by in F6Publishing: 46] [Article Influence: 5.3] [Reference Citation Analysis]
133 Peng S, Song R, Lin Q, Zhang Y, Yang Y, Luo M, Zhong Z, Xu X, Lu L, Yao S, Zhang F. A Robust Oxygen Microbubble Radiosensitizer for Iodine-125 Brachytherapy. Adv Sci (Weinh) 2021;8:2002567. [PMID: 33854878 DOI: 10.1002/advs.202002567] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
134 Chertok B, Langer R. Circulating Magnetic Microbubbles for Localized Real-Time Control of Drug Delivery by Ultrasonography-Guided Magnetic Targeting and Ultrasound. Theranostics 2018;8:341-57. [PMID: 29290812 DOI: 10.7150/thno.20781] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 8.8] [Reference Citation Analysis]
135 Bao J, Tangney T, Pilitsis JG. Focused Ultrasound for Chronic Pain. Neurosurgery Clinics of North America 2022. [DOI: 10.1016/j.nec.2022.02.010] [Reference Citation Analysis]
136 Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021;9:7633-61. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Reference Citation Analysis]
137 Wang ZD, Haitham S, Gong JP, Pen ZL. Contrast enhanced ultrasound in diagnosing liver lesion that spontaneously disappeared: A case report . World J Clin Cases 2021; 9(21): 5948-5954 [PMID: 34368313 DOI: 10.12998/wjcc.v9.i21.5948] [Reference Citation Analysis]
138 Khan MS, Hwang J, Lee K, Choi Y, Jang J, Kwon Y, Hong JW, Choi J. Surface Composition and Preparation Method for Oxygen Nanobubbles for Drug Delivery and Ultrasound Imaging Applications. Nanomaterials (Basel) 2019;9:E48. [PMID: 30609703 DOI: 10.3390/nano9010048] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
139 Omata D, Unga J, Suzuki R, Maruyama K. Lipid-based microbubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 2020;154-155:236-44. [PMID: 32659255 DOI: 10.1016/j.addr.2020.07.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
140 Than A, Zan P, Chen P. Transdermal theranostics. View 2020;1. [DOI: 10.1002/viw2.21] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
141 Liou YR, Wang YH, Lee CY, Li PC. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles. PLoS One 2015;10:e0125036. [PMID: 25993512 DOI: 10.1371/journal.pone.0125036] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
142 Walton CB, Anderson CD, Boulay R, Shohet RV. Introduction to the ultrasound targeted microbubble destruction technique. J Vis Exp 2011:2963. [PMID: 21694693 DOI: 10.3791/2963] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 0.3] [Reference Citation Analysis]
143 Kaya M, Feingold S, Hettiarachchi K, Lee AP, Dayton PA. Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing. Bubble Sci Eng Technol 2010;2:33-40. [PMID: 21475641 DOI: 10.1179/175889610x12779105661532] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
144 Kim H, Lee H, Moon H, Kang J, Jang Y, Kim D, Kim J, Huynh E, Zheng G, Kim H, Chang JH. Resonance-Based Frequency-Selective Amplification for Increased Photoacoustic Imaging Sensitivity. ACS Photonics 2019;6:2268-76. [DOI: 10.1021/acsphotonics.9b00576] [Cited by in Crossref: 7] [Article Influence: 2.3] [Reference Citation Analysis]
145 Peng X, Lin G, Zeng Y, Lei Z, Liu G. Mesoporous Silica Nanoparticle-Based Imaging Agents for Hepatocellular Carcinoma Detection. Front Bioeng Biotechnol 2021;9:749381. [PMID: 34869261 DOI: 10.3389/fbioe.2021.749381] [Reference Citation Analysis]
146 Shapiro G, Wong AW, Bez M, Yang F, Tam S, Even L, Sheyn D, Ben-David S, Tawackoli W, Pelled G, Ferrara KW, Gazit D. Multiparameter evaluation of in vivo gene delivery using ultrasound-guided, microbubble-enhanced sonoporation. J Control Release 2016;223:157-64. [PMID: 26682505 DOI: 10.1016/j.jconrel.2015.12.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 7.4] [Reference Citation Analysis]
147 Tu J, Yu ACH. Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME Frontiers 2022;2022:1-17. [DOI: 10.34133/2022/9807347] [Reference Citation Analysis]
148 Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2021. [PMID: 34767350 DOI: 10.1021/acs.chemrev.1c00622] [Reference Citation Analysis]
149 Epstein-Barash H, Orbey G, Polat BE, Ewoldt RH, Feshitan J, Langer R, Borden MA, Kohane DS. A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials 2010;31:5208-17. [PMID: 20347484 DOI: 10.1016/j.biomaterials.2010.03.008] [Cited by in Crossref: 87] [Cited by in F6Publishing: 75] [Article Influence: 7.3] [Reference Citation Analysis]
150 Kwan JJ, Borden MA. Lipid monolayer collapse and microbubble stability. Adv Colloid Interface Sci 2012;183-184:82-99. [PMID: 22959721 DOI: 10.1016/j.cis.2012.08.005] [Cited by in Crossref: 88] [Cited by in F6Publishing: 76] [Article Influence: 8.8] [Reference Citation Analysis]
151 Ren ST, Liao YR, Kang XN, Li YP, Zhang H, Ai H, Sun Q, Jing J, Zhao XH, Tan LF, Shen XL, Wang B. The antitumor effect of a new docetaxel-loaded microbubble combined with low-frequency ultrasound in vitro: preparation and parameter analysis. Pharm Res 2013;30:1574-85. [PMID: 23417512 DOI: 10.1007/s11095-013-0996-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
152 Márquez MG, Dotson R, Pias S, Frolova LV, Tartis MS. Phospholipid prodrug conjugates of insoluble chemotherapeutic agents for ultrasound targeted drug delivery. Nanotheranostics 2020;4:40-56. [PMID: 31911893 DOI: 10.7150/ntno.37738] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
153 Gurera D, Bhushan B. Bioinspired movement of gas bubbles: composition, applications, generation, contact angle, and movement – an overview. Mol Syst Des Eng 2020;5:1555-77. [DOI: 10.1039/d0me00099j] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
154 Gong Y, Li S, Zeng W, Yu J, Chen Y, Yu B. Controlled in vivo Bone Formation and Vascularization Using Ultrasound-Triggered Release of Recombinant Vascular Endothelial Growth Factor From Poly(D,L-lactic-co-glycolicacid) Microbubbles. Front Pharmacol 2019;10:413. [PMID: 31068814 DOI: 10.3389/fphar.2019.00413] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
155 Sheeran PS, Wong VP, Luois S, McFarland RJ, Ross WD, Feingold S, Matsunaga TO, Dayton PA. Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med Biol 2011;37:1518-30. [PMID: 21775049 DOI: 10.1016/j.ultrasmedbio.2011.05.021] [Cited by in Crossref: 159] [Cited by in F6Publishing: 133] [Article Influence: 14.5] [Reference Citation Analysis]
156 Leinenga G, Götz J. Safety and Efficacy of Scanning Ultrasound Treatment of Aged APP23 Mice. Front Neurosci 2018;12:55. [PMID: 29467614 DOI: 10.3389/fnins.2018.00055] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
157 Martin KH, Dayton PA. Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013;5:329-45. [PMID: 23504911 DOI: 10.1002/wnan.1219] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 8.0] [Reference Citation Analysis]
158 Sandra F, Khaliq NU, Sunna A, Care A. Developing Protein-Based Nanoparticles as Versatile Delivery Systems for Cancer Therapy and Imaging. Nanomaterials (Basel) 2019;9:E1329. [PMID: 31527483 DOI: 10.3390/nano9091329] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]