Published online Sep 22, 2015. doi: 10.5498/wjp.v5.i3.260
Peer-review started: February 7, 2015
First decision: April 10, 2015
Revised: May 26, 2015
Accepted: June 9, 2015
Article in press: June 11, 2015
Published online: September 22, 2015
Processing time: 234 Days and 11 Hours
Synapsin II is a member of the neuronal phosphoprotein family. These phosphoproteins are evolutionarily conserved across many organisms and are important in a variety of synaptic functions, including synaptogenesis and the regulation of neurotransmitter release. A number of genome-wide scans, meta-analyses, and genetic susceptibility studies have implicated the synapsin II gene (3p25) in the etiology of schizophrenia (SZ) and other psychiatric disorders. Further studies have found a reduction of synapsin II mRNA and protein in the prefrontal cortex in post-mortem samples from schizophrenic patients. Disruptions in the expression of this gene may cause synaptic dysfunction, which can result in neurotransmitter imbalances, likely contributing to the pathogenesis of SZ. SZ is a costly, debilitating psychiatric illness affecting approximately 1.1% of the world’s population, amounting to 51 million people today. The disorder is characterized by positive (hallucinations, paranoia), negative (social withdrawal, lack of motivation), and cognitive (memory impairments, attention deficits) symptoms. This review provides a comprehensive summary of the structure, function, and involvement of the synapsin family, specifically synapsin II, in the pathophysiology of SZ and possible target for therapeutic intervention/implications.
Core tip: The pre-synaptic phosphoprotein, synapsin II, is important in a variety of synaptic functions, including synaptogenesis and regulation of neurotransmitter release. Reduced levels of synapsin II in the prefrontal cortex of humans and animals have been found to confer susceptibility to schizophrenia (SZ). Disruptions in synapsin II gene expression, during development and/or adulthood, may cause synaptic dysfunction, resulting in neurotransmitter imbalances that likely contribute to the pathogenesis of SZ. Understanding synapsin II and its role in disease development will help unravel the pathogenic mechanisms of SZ, and may form the basis for use of novel therapeutics in the treatment of SZ.