Kumar H, Fernandez CJ, Kolpattil S, Munavvar M, Pappachan JM. Discrepancies in the clinical and radiological profiles of COVID-19: A case-based discussion and review of literature. World J Radiol 2021; 13(4): 75-93 [PMID: 33968311 DOI: 10.4329/wjr.v13.i4.75]
Corresponding Author of This Article
Joseph M Pappachan, MD, FRCP, Consultant Physician-Scientist, Honorary Professor, Senior Researcher, Department of Medicine & Endocrinology, Lancashire Teaching Hospitals NHS Trust, Sharoe Green Lane, Preston PR2 9HT, United Kingdom. drpappachan@yahoo.co.in
Research Domain of This Article
Radiology, Nuclear Medicine & Medical Imaging
Article-Type of This Article
Evidence Review
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Radiol. Apr 28, 2021; 13(4): 75-93 Published online Apr 28, 2021. doi: 10.4329/wjr.v13.i4.75
Discrepancies in the clinical and radiological profiles of COVID-19: A case-based discussion and review of literature
Hemant Kumar, Cornelius James Fernandez, Sangeetha Kolpattil, Mohamed Munavvar, Joseph M Pappachan
Hemant Kumar, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, United Kingdom
Cornelius James Fernandez, Department of Medicine & Endocrinology, Pilgrim Hospital, Boston PE21 9QS, United Kingdom
Sangeetha Kolpattil, Department of Radiology, University Hospitals of Morecambe Bay NHS Trust, Lancaster LA1 4RP, United Kingdom
Mohamed Munavvar, Department of Pulmonology & Chest Diseases, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
Joseph M Pappachan, Department of Medicine & Endocrinology, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
Joseph M Pappachan, Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
Joseph M Pappachan, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom
Author contributions: Kumar H and Fernandez CJ performed majority of the initial drafting, prepared the figures and tables, and share the first authorship of the paper; Kolpattil S and Munavvar M did additional literature search, and made critical revisions in the write up; Pappachan JM conceived the idea, made critical revisions, and provided final approval of the final version of the manuscript to be published.
Conflict-of-interest statement: Dr. Pappachan and coauthors have nothing to declare.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Joseph M Pappachan, MD, FRCP, Consultant Physician-Scientist, Honorary Professor, Senior Researcher, Department of Medicine & Endocrinology, Lancashire Teaching Hospitals NHS Trust, Sharoe Green Lane, Preston PR2 9HT, United Kingdom. drpappachan@yahoo.co.in
Received: December 16, 2020 Peer-review started: December 16, 2020 First decision: March 31, 2021 Revised: April 3, 2021 Accepted: April 13, 2021 Article in press: April 13, 2021 Published online: April 28, 2021 Processing time: 126 Days and 15.9 Hours
Abstract
The current gold standard for the diagnosis of coronavirus disease-19 (COVID-19) is a positive reverse transcriptase polymerase chain reaction (RT-PCR) test, on the background of clinical suspicion. However, RT-PCR has its limitations; this includes issues of low sensitivity, sampling errors and appropriate timing of specimen collection. As pulmonary involvement is the most common manifestation of severe COVID-19, early and appropriate lung imaging is important to aid diagnosis. However, gross discrepancies can occur between the clinical and imaging findings in patients with COVID-19, which can mislead clinicians in their decision making. Although chest X-ray (CXR) has a low sensitivity for the diagnosis of COVID-19 associated lung disease, especially in the earlier stages, a positive CXR increases the pre-test probability of COVID-19. CXR scoring systems have shown to be useful, such as the COVID-19 opacification rating score which helps to predict the need of tracheal intubation. Furthermore, artificial intelligence-based algorithms have also shown promise in differentiating COVID-19 pneumonia on CXR from other lung diseases. Although costlier than CXR, unenhanced computed tomographic (CT) chest scans have a higher sensitivity, but lesser specificity compared to RT-PCR for the diagnosis of COVID-19 pneumonia. A semi-quantitative CT scoring system has been shown to predict short-term mortality. The routine use of CT pulmonary angiography as a first-line imaging modality in patients with suspected COVID-19 is not justifiable due to the risk of contrast nephropathy. Scoring systems similar to those pioneered in CXR and CT can be used to effectively plan and manage hospital resources such as ventilators. Lung ultrasound is useful in the assessment of critically ill COVID-19 patients in the hands of an experienced operator. Moreover, it is a convenient tool to monitor disease progression, as it is cheap, non-invasive, easily accessible and easy to sterilise. Newer lung imaging modalities such as magnetic resonance imaging (MRI) for safe imaging among children, adolescents and pregnant women are rapidly evolving. Imaging modalities are also essential for evaluating the extra-pulmonary manifestations of COVID-19: these include cranial imaging with CT or MRI; cardiac imaging with ultrasonography (US), CT and MRI; and abdominal imaging with US or CT. This review critically analyses the utility of each imaging modality to empower clinicians to use them appropriately in the management of patients with COVID-19 infection.
Core Tip: The coronavirus disease-19 (COVID-19) pandemic has had a devastating impact on the human race, with the current death toll exceeding 2.8 million. Although a positive reverse transcriptase polymerase chain reaction test is the gold standard for diagnosing a COVID-19 infection, the reported sensitivity of the test is < 90%, and clinicians often need to rely upon various imaging studies for definitive diagnoses and prognostication. However, discrepancies between the clinical and imaging profiles of patients with the disease can often pose challenges in therapeutic decision making. Therefore, it is imperative to understand the diagnostic sensitivity, specificity, and positive and negative predictive values of each imaging modality for the rational management of patients with this enigmatic disease. This evidence-based review is a clinical update to empower clinicians across the world who is involved in combatting COVID-19.