Published online Sep 27, 2022. doi: 10.4240/wjgs.v14.i9.963
Peer-review started: May 3, 2022
First decision: May 11, 2022
Revised: May 22, 2022
Accepted: July 27, 2022
Article in press: July 27, 2022
Published online: September 27, 2022
Processing time: 142 Days and 1 Hours
Postoperative pancreatic fistula (PF) is a serious life-threatening complication after pancreaticoduodenectomy (PD). Our research aimed to develop a machine learning (ML)-aided model for PF risk stratification.
To develop an ML-aided model for PF risk stratification.
We retrospectively collected 618 patients who underwent PD from two tertiary medical centers between January 2012 and August 2021. We used an ML algorithm to build predictive models, and subject prediction index, that is, decision curve analysis, area under operating characteristic curve (AUC) and clinical impact curve to assess the predictive efficiency of each model.
A total of 29 variables were used to build the ML predictive model. Among them, the best predictive model was random forest classifier (RFC), the AUC was [0.897, 95% confidence interval (CI): 0.370–1.424], while the AUC of the artificial neural network, eXtreme gradient boosting, support vector machine, and decision tree were between 0.726 (95%CI: 0.191–1.261) and 0.882 (95%CI: 0.321–1.443).
Fluctuating serological inflammatory markers and prognostic nutritional index can be used to predict postoperative PF.
Core tip: Our research is based on machine learning (ML) algorithms and integrates the correlation between serum inflammatory factors and high risk of postoperative pancreatic fistula (PF), and constructs early warning models that can predict postoperative PF, and the predictive efficiency of these ML-based models may be at the population-based level. In the future, we expect these findings to expand external research to strengthen valuable supporting information and guide treatment decisions.