For: | Shao SL, Li YK, Qin JC, Liu L. Comprehensive abdominal composition evaluation of rectal cancer patients with anastomotic leakage compared with body mass index-matched controls. World J Gastrointest Surg 2022; 14(11): 1250-1259 [PMID: 36504512 DOI: 10.4240/wjgs.v14.i11.1250] |
---|---|
URL: | https://www.wjgnet.com/1948-9366/full/v14/i11/1250.htm |
Number | Citing Articles |
1 |
Mark Broekman, Charlotte M. S. Genders, Ritchie T. J. Geitenbeek, Klaas Havenga, Schelto Kruijff, Joost M. Klaase, Alain R. Viddeleer, Esther C. J. Consten, Ozlem Boybeyi-Turer. Unraveling the role of computed tomography derived body composition metrics on anastomotic leakages rates in rectal cancer surgery: A protocol for a systematic review and meta-analysis. PLOS ONE 2024; 19(7): e0307606 doi: 10.1371/journal.pone.0307606
|
2 |
Francesco Celotto, Quoc R Bao, Giulia Capelli, Gaya Spolverato, Andrew A Gumbs. Machine learning and deep learning to improve prevention of anastomotic leak after rectal cancer surgery. World Journal of Gastrointestinal Surgery 2025; 17(1): 101772 doi: 10.4240/wjgs.v17.i1.101772
|
3 |
Francesco Celotto, Giulia Capelli, Stefania Ferrari, Marco Scarpa, Salvatore Pucciarelli, Gaya Spolverato. Application and use of artificial intelligence in colorectal cancer surgery: where are we?. Artificial Intelligence Surgery 2024; 4(4): 348 doi: 10.20517/ais.2024.26
|