Published online May 15, 2015. doi: 10.4239/wjd.v6.i4.598
Peer-review started: August 30, 2014
First decision: September 30, 2014
Revised: October 14, 2014
Accepted: December 29, 2014
Article in press: December 31, 2014
Published online: May 15, 2015
Processing time: 259 Days and 17.1 Hours
Diabetes mellitus is increasing at an alarming rate and has become a global challenge. Insulin resistance in target tissues and a relative deficiency of insulin secretion from pancreatic β-cells are the major features of type 2 diabetes (T2D). Chronic low-grade inflammation in T2D has given an impetus to the field of immuno-metabolism linking inflammation to insulin resistance and β-cell dysfunction. Many factors advocate a causal link between metabolic stress and inflammation. Numerous cellular factors trigger inflammatory signalling cascades, and as a result T2D is at the moment considered an inflammatory disorder triggered by disordered metabolism. Cellular mechanisms like activation of Toll-like receptors, Endoplasmic Reticulum stress, and inflammasome activation are related to the nutrient excess linking pathogenesis and progression of T2D with inflammation. This paper aims to systematically review the metabolic profile and role of various inflammatory pathways in T2D by capturing relevant evidence from various sources. The perspectives include suggestions for the development of therapies involving the shift from metabolic stress to homeostasis that would favour insulin sensitivity and survival of pancreatic β-cells in T2D.
Core tip: Immuno-metabolism, the confluence of metabolism and immune system has emerged as a chief breakthrough especially in the field of diabetes mellitus; a metabolic disorder of great magnitude. Activation of immune system by metabolic stress has opened new insights in the pathogenesis and progression of type 2 diabetes (T2D). The link between metabolic overload and activation of the immune system form the core tip of this review. Metabolic stress can cause pathologic activation of the immune system, thus metabolic disorders like T2D manifest and progress as an inflammatory disorder with severe consequences thereof.