Published online Oct 15, 2022. doi: 10.4239/wjd.v13.i10.888
Peer-review started: June 18, 2022
First decision: July 14, 2022
Revised: July 23, 2022
Accepted: September 12, 2022
Article in press: September 12, 2022
Published online: October 15, 2022
Processing time: 117 Days and 18.8 Hours
Gestational diabetes mellitus (GDM) is a metabolic disease with an increasing annual incidence rate. Our previous observational study found that pregnant women with GDM had mild cognitive decline.
To analyze the changes in metabonomics in pregnant women with GDM and explore the mechanism of cognitive function decline.
Thirty GDM patients and 30 healthy pregnant women were analyzed. Solid-phase microextraction gas chromatography/mass spectrometry was used to detect organic matter in plasma and urine samples. Statistical analyses were conducted using principal component analysis and partial least squares discriminant analysis.
Differential volatile metabolites in the serum of pregnant women with GDM included hexanal, 2-octen-1-ol, and 2-propanol. Differential volatile metabolites in the urine of these women included benzene, cyclohexanone, 1-hexanol, and phenol. Among the differential metabolites, the conversion of 2-propanol to acetone may further produce methylglyoxal. Therefore, 2-propanol may be a potential marker for serum methylglyoxal.
2-propanol may be a potential volatile marker to evaluate cognitive impairment in pregnant women with GDM.
Core Tip: Gas chromatography-mass spectrometry was used in a metabonomics analysis to determine the changes in volatile metabolites in pregnant women with gestational diabetes mellitus (GDM) and to explore the mechanism of cognitive function decline in these women. 2-propanol was identified as a potential volatile marker to evaluate cognitive impairment in pregnant women with GDM.