Review
Copyright ©The Author(s) 2022.
World J Gastrointest Oncol. Apr 15, 2022; 14(4): 765-793
Published online Apr 15, 2022. doi: 10.4251/wjgo.v14.i4.765
Table 1 Artificial intelligence applications in the prevention of hepatocellular carcinoma

First author
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance
Ref.
1Wang JGenetic and epigenetic biomarkersSeveral137 HCC and 431 non-HCC patientsHCC screening0.910-0.9501,2, 0.897-0.9381,3, 75.0-91.52,4, 66.4-90.63,4, 1.0-88.82,5, 0.5-87.93,5[47]
2Nam JYLaboratory results, clinicopathological parametersDNN424/3163 patientsHCC development in HBV cirrhosis0.7191,2, 0.7821,3[48]
3Xia QLong non-coding RNAsSeveral38 healthy samples, 45 chronic HBV patients, 46 liver cirrhosis, and 46 HCC patientsHCC development in HBV cirrhosis71.1-89.53,6[49]
4Chen SHBV reverse transcriptase gene sequencingRF, SVM, KNN307 chronic HBV patients (202/105), 237 HCC patients (159/78)HCC development in HBV cirrhosisRF: 0.902-0.9031,2, 0.903-0.9431,3, SVM: 0.879-0.9241,2, 0.727-0.8581,3, KNN: 0.680-0.7371,2, 0.734-0.7471,3[50]
5Hashem SLaboratory results, clinicopathological parametersSeveral3099 chronic HCV patients1324 HCC patientsHCC development in HCV cirrhosis93.2-95.63,6, 0.955-0.9901,3, 86.3-91.83,4, 93.9-97.33,5[51]
6Audureau ELaboratory results, clinicopathological parametersSeveral836/6687HCC development in HCV cirrhosis0.633-0.8071,2, 0.623-0.7151,7[52]
7Ioannou GNClinical/laboratory data extracted directly from electronic health recordsDNN48151 patients with HCV-related cirrhosis (training:test = 9:1)HCC development in HCV cirrhosis0.759-0.8061,3[53]
8Singal AGLaboratory results, clinicopathological parametersRF442/10507HCC development in cirrhosis0.711,2, 0.641,7[54]
Table 2 Artificial intelligence application in hepatocellular carcinoma diagnosis

First author
Diagnostic modality
AI classifier
Sizes of the training/validation sets
Outcomes
Performance
Ref.
1Sato MLaboratory results, clinicopathological parametersSeveral1582 patientsHCC early detection81.65-87.361,2, 0.870-0.9403,2[55]
2Zhao XMicroRNA expression profilesSeveral392 patientsHCC early detectionRF: 0.9823, SVM: 0.9703, DT: 0.8313[56]
3Zhang ZMGene expression profilesSVM1333/336 HCC samplesHCC early detection1001,2, 1002,4, 1002,5, 0.95973,6, 91.934,6, 1005,6[57]
4Tao KCirculating tumor DNARF-based209/766/996HCC early detection0.874-0.9331,2, 0.812-0.9203,6[58]
5Li GMicroRNA and long non-coding RNA expression profilesSVM, RF, DT361 patientsHCC early detectionRF: 0.9921,2, 95.62,4, 1002,5; SVM: 0.9922,3, 97.22,4, 98.02,5; DT: 0.9272,3, 98.32,4, 92.02,5[59]
6Schmauch BUS imagingCNN109 images with focal liver lesionsClassification of benign from malignant focal liver lesions; classification among five focal liver lesions0.916-0.9422,3; 0.886-0.9542,3[60]
7Yang QUS imaging, clinical parametersCNN16500/41252/37186 US imagesClassification among 16 different focal liver lesions0.859-0.9663,7, 0.765-0.9252,3, 0.750-0.9243,6[61]
8Virmani JB-mode US imagingNNE108 imagesClassification among normal liver and four focal liver lesions95.01,2[62]
9Shiraishi JMicroflow imaging of contrast-enhanced USANN103 focal liver lesionsClassification among HCC, metastasis, and hemangioma; histopathological grade86.9-93.81,2; 50.0-79.21,2[63]
10Zhou JMultiphasic CT scansCNN616 liver lesionsClassification of benign and malignant lesions. Classification of 6 types of focal liver lesions76.6-88.42,4,5, 82.51,2, 0.9212,3, 46.4-93.12,4, 91.9-98.62,5, 73.41,2, 0.766-0.9832,3[64]
11Yasaka KContrast-enhancedCT imagingCNN460/1006 patientsClassification among five types of focal liver lesions951,7, 841,6, 33-1004,6[65]
12Shi WMultiphasic CT scansMP-CDN449 focal lesions. Training:validation ratio = 8:2Classification between HCC and non-HCC focal lesions0.811-0.8561,2, 0.862-0.9252,3, 0.744-0.9232,4, 0.725-0.9412,5[66]
13Todoroki YMultiphasic CT imagingCNN89 patientsClassification among five focal liver lesions79-1002,4[67]
14Matake KClinicopathological parameters, CT imagingANN120 patientsClassification among four types of focal liver lesions0.9612,3[68]
15Liang WCT and MRI radiomicsRF170 CT scans; 137 MRI scansClassification of three types of focal liver lesionsCT model: 0.9963,7, 0.8792,3. MRI model: 0.9993,7, 0.9252,3[69]
16Hamm CAMultiphasic MRI imagingCNN434/60 lesionsClassification among six types of focal liver lesions; identify HCC; classification of LI-RADS 922,4, 982,5; 0.9922,3; 944,6, 972,5[70,71]
17Jansen MJAMRI imagingExtremely randomized trees classifier95 patientsClassification among five different focal liver lesions85-921,2, 62-932,4, 56-932,5[72]
18Zhen SHMRI scansCNN1210/2016Classification among seven different focal liver lesions0.841-0.9873,6, 40.5-1004,6, 86.4-99.55,6[73]
19Kiani AHematoxylin and eosin-stained WSICNN207/262/806 WSIsClassification of HCC and CCA88.51,2, 84.21,6[74]
20Chen MHematoxylin and eosin-stained WSICNN491 WSIs (402 HCC, 89 normal liver tissue)Classification of HCC and normal liver tissue; histopathological grade0.9601,2, 0.9612,3; 89.61,2[75]
21Lin HMultiphoton microscopyCNN217 imagesHistopathological grade0.812-0.9411,2, 0.891-0.9172,3[76]
22Yamashita RHematoxylin and eosin-stained WSICNN28/42/306 WSIsHCC lesion detection0.9522,3, 0.9563,6[77]
23Roy MHematoxylin and eosin-stained WSICAE50 WSIsSegmentation of viable tumors91-951,2[78]
24Giordano SPESI-MSSVM, RF117 HCCs, 50 CCA, 151 non-tumor groupClassification of HCC, CCA, and non-tumor groupsSVM: 95.1-98.51,6; RF: 94-94.91,6[79]
25Guo LHContrast-enhanced ultrasound imagingMKL93 lesionsClassification of benign from malignant focal liver lesions90.411,2, 93.562,4, 86.892,5[80]
26Bharti PUS imagingSeveral189 imagesClassify among normal liver, chronic liver disease, cirrhosis, and HCC96.61,2, 95.5-96.92,4, 98.0-99.82,5[81]
27Brehar RUS imagingCNN268 patientsClassification between HCC and cirrhotic parenchyma84.84-911,2, 0.91-0.952,3, 86.79-94.372,4, 82.95%-88.38%2,5[82]
28Mao BUltrasound radiomicsSeveral114 patientsClassify primary from metastatic liver cancer0.729-0.8081,2, 0.737-0.7932,3, 0.775-0.8682,4, 0.667-0.8802,5[83]
29Almotairi SCT imagingCNN20 CT scansTumor segmentation98.81,7[84]
30Budak ÜCT imagingCNN20 CT scansTumor segmentationVolumetric overlap error: 9.05%2[85]
31Nayak AMultiphasic CT imagingSVM40 patientsClassification between HCC and cirrhotic parenchyma80-86.91,2, 0.932,3[86]
32Krishan ACT scansSeveral1638 CT scansIdentification of liver lesions; classification between HCC and metastasis98.39-1001,2, 0.99-1.002,3; 76.38-87.011,2, 0.77-0.992,3[87]
33Chen WFCT scansSED300 CT scansTumor segmentation0.9921, 0.952,3[88]
34Khan AACT scansSeveral179 patientsClassification between HCC and hemangioma96.6-98.31,6, 0.94-0.973,6, 94.23-97.035,6[88]
35Mokrane FZMultiphasic CT radiomicsSeveral106/362/366Classification between HCC and non-HCC lesions0.813,7, 0.814,7, 0.725,7, 0.722,3, 0.663,6[90]
36Mao BCT radiomics, clinical parametersGradient boosting237/606 patientsHistopathological grade61.18-97.051,6, 0.7071-0.99643,7, 60.67-95.514,7, 51.35-80.415,7, 48.33-70.001,6, 0.6128-0.80143,6, 43.48-65.224,6, 37.84-81.085,6[91]
37Preis OPET/CT imagingANN98 patientsClassification between benign and malignant liver lesions0.896-0.9052,3[92]
38Trivizakis EDiffusion-weighted MRICNN, SVM134 patientsClassification between primary liver cancer and metastasis85.51,7, 831,2, 0.802,3, 932,4, 672,5[93]
39Oestmann PMMultiphasic MRI scansCNN150/102Classification of HCC and non-HCC lesions94.11,7, 87.31,2, 0.9122,3. For HCC: 92.72,4, 82.02,5. For non-HCC: 82.02,4, 92.72,5[94]
40Bousabarah KMRI scansCNN, RF174 patients/ 231 lesionsHCC detection0.66-0.752,4, 0.55-0.734,6[95]
41Kim JMRI scansCNN4552,7/546HCC detection0.972,3, 942,4, 992,5, 0.903,6, 874,6, 935,6[96]
42Jian WNon-enhanced MRI scansCNN75/406 HCCsHCC detection65.00-77.001,6, 0.70-0.823,6, 64.55-78.184,6, 65.56-75.565,6[97]
43Wu YMultiphasic MRI imagingCNN89 HCCsClassification between LI-RADS 3 and LI-RADS 4/50.767-0.9001,6, 0.90-0.953,6, 0.76-1.004,6, 0.633-0.8075,6[98]
Table 3 Artificial intelligence application in hepatocellular carcinoma treatment

First author
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance
Ref.
1Tsilimigras DILaboratory results, clinicopathological parameters, tumor characteristicsCART976Determining factors of prognostic weight preoperatively within the BCLC staging system-[99]
2Liu FContrast-enhanced US radiomics, laboratory tests, and clinicopathological parametersCNN293/126 patients2-yr progression-free survival of patients following RFA or surgical resection0.754-0.7841,2, 0.726-0.7411,3[100]
3Choi GHDemographics, laboratory results, tumor characteristics, clinicopathological parametersRF813/208 patientsTreatment recommendation. Survival prediction76.6-88.43,4, 53.0-82.33,5, 69.3-95.83,6. 0.676-0.9591,3[101]
4Chen MHematoxylin and eosin-stained WSICNN377 (training:validation = 3:1)/ 677 patientsMutation prediction89.6-94.03,4, 0.720-0.8051,7[75]
5Liao HHematoxylin and eosin-stained WSICNN309/653/787Mutation prediction0.519-0.9031,3, 0.605-0.7971,7[103]
6Gu JMultiphasic CT scansCNN14 patientsMutation prediction67.7-77.33,4[104]
7Chen GLaboratory resultsLIME1007/10857 patientsMVI0.9181,2, 0.8321,3, 0.9051,7[105]
8Zhang YMRI scansCNN158/79 patientsMVI0.811,2, 692,5, 792,6, 0.721,3, 553,5, 813,6[106]
9Wang GDWICNN60/402 HCCsMVI66.81-77.502,3,4, 68.65-79.691,2,3, 56.56-76.472,3,5, 64.35-79.132,3,6[107]
10Liu QPCT radiomicsRF, SVM494 patientsMVI0.841,2, 0.791,3[108]
11Jiang YQCT radiomics, clinical/laboratory parametersGradient boosting, CNN405 patients [220 MVI (+)/185 MVI (-)]MVIGradient boosting: 0.900-0.9521,2, 0.873-0.8871,3. CNN: 80.2-85.23,4, 0.900-0.9801,2, 0.875-0.9061,3, 0.659-0.9323,5, 0.757-0.9733,6[109]
12Cucchetti ALaboratory results, clinicopathological parameters, radiological data, histological dataANN175/753MVI. Histopathological grade0.921,2, 91.03,4. 0.941,2, 93.33,4[110]
13Mai RYLaboratory results, clinicopathological parameters, liver volumetryANN265/88 patientsPosthemihepatectomy liver failure0.8801,2, 0.8761,3[111]
14Shi HYLaboratory results, clinicopathological parameters, surgery parametersANN22926 hepatectomiesIn-hospital mortality following surgical resection97.283,4, 0.841,3, 95.934,7, 0.821,7, 78.405,7, 94.576,7[112]
15Liu DUS radiomicsCNN89/41 patientsClassify full/partial response from stable disease/ progression in patients treated with TACE78-982,4, 0.82-0.981,2, 78.6-98.22,5, 74.2-96.72,6, 0.80-0.903,4, 0.80-0.931,3, 82.1-89.33,5, 73.3-92.33,6[113]
16Morshid AMultiphasic CT scans, BCLC stageCNN, RF105 patientsClassify TACE-susceptible from TACE-refractory HCC62.9-74.23,4, 0.7331,3[114]
17Peng JCT imagingCNN562/897/1387Classification of complete response, partial response, stable disease, and progressive disease following TACE84.02,4, 0.95-0.971,2, 82.8-85.14,7, 0.94-0.981,7[115]
18Abajian AMRI imaging, clinical dataRF36 patientsClassification of responders and non-responders following TACE663,4, 62.53,5, 67.93,6[116]
19Zhu YFF-OCTSVM285 en face imagesCancerous hepatic cell identification0.93781,7[117]
20Liang ZX-ray imagingCNN2943/15423/14427 imagesLocalization of fiducial markers98.64,7[118]
21Liu YCT/MRI imagingDense-cycle GAN21 patientsIdentify differences between synthetic CT and CT, and compare their dose distribution -[119]
22Taebi AComputational fluid dynamicsCNN3804 samplesYttrium-90 distribution in radioembolizationMean square error: 0.54 ± 0.14[120]
23Tong ZDNA profilingSVM43 patientsDrug target prediction0.8827-0.88491,3, 53-65.443,5, 88.76-93.633,6[121]
Table 4 Artificial intelligence application in hepatocellular carcinoma prognosis

First author
Parameters employed
AI classifier
Sizes of the training/validation sets
Outcomes
Performance
Ref.
1Chaudhary KDNA methylation, RNA, and microRNA profilingSeveral360 patients (training:validation = 6:4)Overall survival0.701,2, 0.66-0.701,3, 0.67-0.821,4[122]
2Chicco D50 laboratory and clinical parametersSeveral165 patients with HCCOverall survivalRF: 77.21, 0.7665; Linear SVM: 77.15, 0.7631; MLP: 72.75, 0.6951; Radial SVM: 68.05, 0.6631; DT: 65.95, 0.6501[123]
3Liu XLaboratory results, data from immunochemistry of peripheral blood mononuclear cells, tumor characteristicsGBA classifier136/563/1054Risk of HCC-related death0.8441,2, 0.8271,3, 0.8061,4[124]
4Shi HYLaboratory results, clinicopathological parameters, tumor characteristicsANN22926 patients5-yr survival following surgical resection96.573,5, 0.8851,3, 97.434,5, 0.8711,4, 74.234,6[125]
5Chiu HCLaboratory results, clinicopathological parameters, tumor characteristicsANN434, 341, and 264 patients for 1-, 3-, and 5-year survival(training:validation = 8:2)1-, 3-, and 5-yr overall survivalfollowing surgical resection98.5-99.52,5, 0.980-0.9931,2, 99.7-1002,6, 96.2-99.22,7, 72.1-85.13,5, 0.798-0.8751,3, 71.4-88.63,6, 50.0-82.13,7[126]
6Qiao GLaboratory results, clinicopathological parameters, tumor characteristicsANN362/1813/1044 patientsSurvival following surgical resection0.8551,2, 80.002,6, 73.402,7, 0.8321,3, 78.673,6, 75.703,7, 0.8291,4, 77.424,6, 78.084,7[127]
7Guo LRNA sequencingRF239/130 patientsOverall survival893,5[128]
8Saillard CHematoxylin and eosin-stained WSICNN309/3424 WSIsSurvival following surgical resection0.75-0.781,2, 0.68-0.701,4[129]
9Zhong BYALBI/CTP stageANN548/1154/1754Survival of patients treated with chemoembolization as monotherapyALBI-based: 0.7991,4, 0.7001,4; CTP-based: 0.7291,4, 0.8021,4[130]
10Zhong BYALBI/CTP stageANN319/614/1244Survival of patients treated with chemoembolization and sorafenibALBI-based: 0.7161,4, 0.8231,4; CTP-based: 0.7791,4, 0.6931,4[131]
11Zhang LCT scans, clinical featuresCNN120/813 patientsSurvival of patients treated with chemoembolization and sorafenib0.7171,2, 0.7141,3[132]
12Liu QPCT radiomics, clinical parametersDNN-DAE243 patientsOverall survival following TACE0.87-0.931,3[108]
13Mähringer-Kunz ARoutine laboratory tests and clinicopathological parametersANN125/57 patients1-yr overall survival following TACE0.771,2, 0.831,3, 77.83,6, 81.03,7[133]
14Liu XRoutine laboratory tests and clinicopathological parametersANN1480/637 patients Progression-free survival. Overall survival0.8661,2, 0.7301,3. 0.8771,2, 0.8041,3[134]
15Ho WHLaboratory results, clinicopathological parameters, surgery parametersANN, DT427, 354, and 297 patients for 1-, 3-, and 5-yr survival (training:validation = 8:2)1-, 3-, and 5-yr disease-free survival following surgical resectionANN: 0.963-0.9891,2, 93.5-96.32,6, 91.6-97.92,7, 0.774-0.8641,3, 70.0-78.73,6, 54.2-92.73,7. DT: 0.675-0.8251,2, 19.6-94.82,6, 45.8-97.92,7, 0.561-0.7181,3, 0-88.53,6, 37.5-96.43,7[135]
16Bedon LDNA methylation profilingRF-based300/74 specimens6-mo progression-free survival67.1-80.62,5, 64.8-80.24,5[136]
17Schoenberg MBRoutine laboratory tests and clinicopathological parametersRFS127/53 patientsDisease-free survival following resection0.766-0.7881,3[137]
18Wu CFLaboratory tests and clinicopathological parameters, treatment dataANN252 patients(training:validation = 8:2)1-yr and 2-yr disease-free survival following RFA0.72-0.771,3, 56.3-63.63,6, 70.0-71.83,7[138]
19Divya RLaboratory results, clinicopathological parameters, tumor characteristicsAPO, SVM, RF152 patientsRecurrence following RFA95.53,5, 95.13,6, 95.83,7[139]
20Huang YDemographics, laboratory tests, tumor characteristicsGBS classifier5928/1483 patientsRecurrence following surgical resection. Overall survival0.7041,2, 0.697-0.7131,3. 0.565-0.7361,2, 0.551-0.7511,3[140]
21Shen JDisease-free related genes sequencingDT, SVM315 HCC patientsRecurrence following surgical resectionDT: 74.195, 0.751, 70.414,5. SVM: 80.655, 0.5951[141]
22Wang WCT radiomics, clinical dataCNN, SVM, RF167 patients Early recurrence following surgical resection0.723-0.8251,3[142]
23Ji GWCT radiomics, laboratory results, clinicopathological parametersSeveral210/1073/1534 patientsRecurrence time following surgical resectionRadiomics model: 0.748-0.7521,2, 0.781-0.8011,3, 0.733-0.7411,4. Clinical model: 0.716-0.7271,2, 0.707-0.7391,3, 0.696-0.7161,4[143]
24Xu DRoutine laboratory tests and clinicopathological parameters, intra-operative parametersBN-based995 patientsRecurrence time following surgical resection0.573,5, 0.573,6[144]
25Jianzhu BSeveral including immune, tumor, nutrition, and indicatorsCS-SVM776 liver cancer recurrencesRecurrence time. Recurrence locationMean square error = 9.2101, 95.75, 0.951[145]
26Yamashita RHematoxylin and eosin-stained WSICNN299/533/1984 WSIsRecurrence following surgical resection0.7241,3, 0.6831,4[77]
27Liao HHematoxylin and eosin-stained WSIRF491 WSIsOverall survival0.563-0.7061,3, 0.565-0.6211,4[146]
28Saito AHematoxylin and eosin-stained WSISVM69/894Recurrence time following surgical resection99.82,5, 68.1-80.64,5[147]
29Liang JDLaboratory results, clinicopathological parametersSVM83 patientsRecurrence following RFA73-823,5, 0.60-0.691,3, 77-863,6, 73-823,7[148]
30An CMRI scansCNN141 HCC lesionsLocal tumor progression following MWA0.7281[149]
31Nam JYRoutine laboratory tests and clinicopathological parametersDNN349/214 patientsPost-transplant HCC recurrence0.62-0.751,3, 0.63-0.763,6, 0.46-0.623,7[150]
32Nam JYLaboratory results, clinicopathological parameters, tumor characteristicsDNN349/214 transplanted patientsPost-transplant HCC recurrence0.751,3, 763,6, 463,7[150]
33Rodriguez-Luna HGenotyping data from microsatellite mutations/deletionsANN19 transplanted patientsPost-transplant HCC recurrence89.53,5[151]
34Guo DLaboratory results, clinicopathological parameters CT radiomicsLASSO93/40 transplanted patientsRecurrence free-survival following liver transplantation 0.675-0.7851,2, 0.705-0.7891,3[152]
35Lau LLaboratory results, clinicopathological parameters, donor characteristicsANN, RF90/90 transplantsGraft failure/primary nonfunction. 3-mo graft failureANN: 0.734-0.8351,3; RF: 0.787-0.8181,3. ANN: 0.5591,3, RF: 0.7151,3[153]
36Briceño JLaboratory results, clinicopathological parameters, surgical parameters, donor characteristicsANN1003 liver transplants3-mo graft failure0.806-0.8211,3[154]
37Ershoff BDLaboratory results, clinicopathological parameters, donor characteristicsDNN46035/1150990-d post-transplant survival0.695-0.7081,3, 30.9-35.83,6, 88.1-90.83,7[155]