Copyright ©The Author(s) 2021.
World J Gastrointest Oncol. Jun 15, 2021; 13(6): 495-508
Published online Jun 15, 2021. doi: 10.4251/wjgo.v13.i6.495
Table 1 Studies of colorectal cancer-associated bacteria in the APCMin/+ mouse model
Bacterial strain
Mechanism of carcinogenesis
Kostic et al[18], 2013F. nucleatumInfiltration of CD11+ myeloid-derived immune cells
Tomkovich et al[49], 2017F. nucleatum and pks+ E. coliMediated by inflammation, with colibactin-producing E. coli but not with F. nucleatum (FadA+ or Fap2+)
Yang et al[50], 2017F. nucleatumRegulation of miR-21 via TLR4/MYD88/NF-κB pathway
Wu et al[51], 2018F. nucleatumTLR4/p-PAK1/p-β-catenin S675 pathway
Chen et al[52], 2018F. nucleatumInduction of M2 macrophage polarization via TLR4. Activation of the IL-6/p-STAT3/c-MYC signaling pathway
Rubinstein et al[53], 2019F. nucleatumFadA adhesin upregulates Annexin A1 expression through E-cadherin
Dejea et al[54], 2018Mono- or co-colonization of ETBF and pks+ E. coliUpregulation of IL-17 and DNA damage
Chung et al[55], 2018ETBFPathway involving activation of IL-17R, NF-κB, Stat3, and CXCL1
Goodwin et al[56], 2011ETBFProduction of spermine oxidase, reactive oxygen species and DNA damage
He et al[57], 2019Campylobacter jejuniDNA damage due to cytolethal distending toxin
Li et al[15], 2019Mixed strains from fecal samples of CRC patients after antibiotic cocktailsWnt/β-catenin and cyclin D1 pathway