Original Article
Copyright ©2014 Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Jul 15, 2014; 6(7): 225-243
Published online Jul 15, 2014. doi: 10.4251/wjgo.v6.i7.225
Novel diet-related mouse model of colon cancer parallels human colon cancer
Anil R Prasad, Shilpa Prasad, Huy Nguyen, Alexander Facista, Cristy Lewis, Beryl Zaitlin, Harris Bernstein, Carol Bernstein
Anil R Prasad, Department of Pathology, Northwest Medical Center, Tucson, AZ 85741, United States
Anil R Prasad, Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ 85724, United States
Shilpa Prasad, College of Arts and Sciences, Boston University, Boston, MA 2215, United States
Huy Nguyen, Alexander Facista, Cristy Lewis, Harris Bernstein, Carol Bernstein, Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, United States
Beryl Zaitlin, Matrix Solutions Inc., Alberta T2R 0V2, Canada
Author contributions: All authors contributed equally to this work; Bernstein C designed the experiments; Prasad AR performed the pathologic and histologic analysis; Prasad S and Bernstein C collected the digital images; Nguyen H, Facista A and Lewis C performed the immunohistochemistry; Zaitlin B performed the statistical analysis; Prasad AR and Bernstein C drafted the manuscript; and Bernstein H critically revised the manuscript.
Supported by National Institutes of Health, No. 5 R01 CA119087; Arizona Biomedical Research Commission, No. 0803; and Veterans Affairs Merit Review, No. 0142; administered by the Southern Arizona Veterans Affairs Health Care System
Correspondence to: Carol Bernstein, PhD, Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, 2639 E 4th Street, Tucson, AZ 85716, United States. bernstein324@yahoo.com
Telephone: +1-520-2415260 Fax: +1-520-3240275
Received: October 19, 2013
Revised: April 4, 2014
Accepted: June 18, 2014
Published online: July 15, 2014
Core Tip

Core tip: Mouse models of colon carcinogenesis are essential as platforms for trials of prevention and therapy. However, most previous rodent models of colon carcinogenesis lack an invasive phenotype and/or do not share several significant genetic events and histopathological features of human colon cancer. This new diet-related mouse model of colon cancer is unique in being closely parallel to human progression to sporadic colon cancer by measures of its histomorphology and its molecular profile. It also has a natural basis, using dietary deoxycholic acid, long thought to be a central causative agent in colon carcinogenesis.