Published online Feb 15, 2024. doi: 10.4251/wjgo.v16.i2.493
Peer-review started: November 9, 2023
First decision: November 23, 2023
Revised: December 5, 2023
Accepted: January 12, 2024
Article in press: January 12, 2024
Published online: February 15, 2024
Processing time: 84 Days and 16.6 Hours
Gastric cancer (GC) is a malignant tumor of digestive tract with high incidence and mortality. The treatment of GC is more difficult due to its characteristics such as rapid invasive growth, difficulties in personalized medication and high risk of recurrence. Resveratrol, as a traditional Chinese medicine (TCM) monomer, plays an outstanding anticancer role in a variety of cancers.
In this study, network pharmacology, bioinformatics, molecular docking technology and experimental verification were used to explore the important effects and key targets of resveratrol in anti-GC. This discovery is of great clinical significance for identifying potential novel biomarkers and therapeutic targets for GC treatment.
The main objective of this study was to explore the mechanism of resveratrol based on network analysis. In this study, through network analysis and in vitro experiments, we verified the anti-cancer effects of resveratrol on GC cells, including inhibiting proliferation, invasion and migration, inducing cycle arrest and apoptosis, as well as important action targets. Our results suggested that resveratrol has a great clinical value as an anti-GC drug, providing a new direction for the drug treatment of GC.
Network pharmacology, bioinformatics, molecular docking technology and experiments were used in this study. These methods utilize biological networks to mechanically link drugs and diseases, comprehensively elucidate the roles and molecular mechanisms of resveratrol in GC.
In the research, FBJ murine osteosarcoma viral oncogene homolog (FOS) and matrix metallopeptidase 9 (MMP9) were screened as the most important targets of resveratrol against GC by using multiple biological information databases. The experiments verified the anti-GC effect of resveratrol by targeting FOS and MMP9. These findings provide a scientific basis for GC treatment of resveratrol, and also provide a new method for the study of the mechanism of TCM monomer or compound in the diseases However, the pathways which may play critical roles in the anti-GC effect of resveratrol have not been fully validated and should be further studied.
In the research, the key biotargets and biological effects of resveratrol against GC were explored by molecular network analysis and experimental verification for the first time.
Development and validation of biomarkers for classifying and treating diseases through bioinformatics and machine learning.