Editorial
Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. May 15, 2015; 7(5): 30-46
Published online May 15, 2015. doi: 10.4251/wjgo.v7.i5.30
Epigenetic reduction of DNA repair in progression to gastrointestinal cancer
Carol Bernstein, Harris Bernstein
Carol Bernstein, Harris Bernstein, Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, United States
Author contributions: Both authors contributed to this manuscript.
Conflict-of-interest: The authors have no conflicts of interest. Carol Bernstein has no conflicts of interest. Harris Bernstein has no conflicts of interest.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Carol Bernstein, Research Associate Professor, Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ 85724, United States. bernstein324@yahoo.com
Telephone: +1-520-2415260
Received: December 14, 2014
Peer-review started: December 16, 2014
First decision: March 6, 2015
Revised: April 4, 2015
Accepted: April 16, 2015
Article in press: April 20, 2015
Published online: May 15, 2015
Processing time: 155 Days and 0.6 Hours
Abstract

Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.

Keywords: Epigenetic; DNA damage; DNA repair; DNA repair deficiency disorders; Epimutation; Genomic instability; Germ-line mutation; MicroRNAs; Precancerous conditions; Gastrointestinal cancer

Core tip: The primary cause of cancer is DNA damage. DNA damage leads to replication errors and erroneous repair, and can result in driver mutations and epimutations. While germ-line mutations in DNA repair genes cause cancer-prone syndromes, mutations in DNA repair genes are infrequent in sporadic gastrointestinal cancers. However, reduction of DNA repair proteins due to epigenetic repression of DNA repair genes is very frequent and can cause early steps in sporadic cancers. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents.