Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.1019
Peer-review started: October 30, 2023
First decision: December 6, 2023
Revised: December 16, 2023
Accepted: January 17, 2024
Article in press: January 17, 2024
Published online: March 15, 2024
Processing time: 133 Days and 23.8 Hours
Through experimental research on the biological function of GATA6-AS1, it was confirmed that GATA6-AS1 can inhibit the proliferation, invasion, and migration of gastric cancer cells, suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer. Further experi
To investigate the effects of GATA6-AS1 on the proliferation, invasion and migration of gastric cancer cells and its mechanism of action.
We used bioinformatics methods to analyze the Cancer Genome Atlas (https://portal.gdc.cancer.gov/. The Cancer Genome Atlas) and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue. We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation, migration and invasion, and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer. Next, we used a database (http://starbase.sysu.edu.cn/starbase2/) to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1. Furthermore, RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme. These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.
Low expression levels of GATA6-AS1 were detected in gastric cancer. We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells. GATA6-AS1 had strong binding ability with the m6A demethylase FTO, which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1. Following transfection with siRNA to knock down the expression of FTO, the expression levels of GATA6-AS1 were up-regulated. Finally, the proliferation, migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.
During the occurrence and development of gastric cancer, the overexpression of FTO may inhibit the expression of GATA6-AS1, thus promoting the proliferation and metastasis of gastric cancer.
Core Tip: Long non-coding RNA GATA6-AS1 is down-regulated in gastric malignant tumor, and capable to inhibit the proliferation, migration and invasion of tumor cells, acting as a tumor suppressor gene in gastric cancer cells. Fat mass and obesity-associated protein (FTO) is highly expressed in gastric cancer, and the down-regulation of GATA6-AS1 in gastric cancer is regulated by the N6-methyladenine demethylase FTO. Therefore, during the occurrence and development of gastric cancer, overexpressed FTO may inhibit the expression of GATA6-AS1, thus promoting the proliferation and metastasis of gastric cancer.