Published online Feb 15, 2019. doi: 10.4251/wjgo.v11.i2.71
Peer-review started: November 10, 2018
First decision: November 28, 2018
Revised: December 11, 2018
Accepted: January 1, 2019
Article in press: January 1, 2019
Published online: February 15, 2019
Processing time: 101 Days and 18.8 Hours
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Core tip: Colorectal cancer (CRC) is a deadly cancer associated with the deregulation of multiple genetic and epigenetic mechanisms, leading to the silencing of tumor suppressors and the induction of both oncogenes and inflammation-related genes. Among them, a novel class of RNA-binding proteins called Adenylate-Uridylate-rich element-binding proteins have been involved in the post-transcriptional regulation of genes linked to CRC tumorigenesis. Current findings indicate the major regulatory roles these RNA-binding proteins have on deregulated pathways associated with CRC. Therefore, targeting these proteins may represent a novel and efficient therapeutic approach.