Published online Aug 16, 2019. doi: 10.4253/wjge.v11.i8.454
Peer-review started: March 4, 2019
First decision: April 11, 2019
Revised: July 8, 2019
Accepted: July 20, 2019
Article in press: July 20, 2019
Published online: August 16, 2019
Processing time: 108 Days and 22.8 Hours
Fine needle aspiration (FNA) is currently the standard of care for sampling pancreatic solid masses by using endoscopic ultrasound (EUS). The accuracy of the technique is reported to be high, especially if coupled with the rapid on site evaluation (ROSE), and it has a high safety profile. However, FNA presents some limitations, such as the small amount of tissue that can be collected and the inability of obtaining a core tissue with intact histological architecture, which is relevant to perform immunohistochemical analysis, molecular profiling and, therefore, targeted therapies. Moreover, the presence of the ROSE by an expert cytopathologist is very important to maximize the diagnostic yield of FNA technique; however, it is not widely available, especially in small centers. Hence, the introduction of EUS fine needle biopsy (FNB) with a new generation of needles, which show a high safety profile too and a satisfying diagnostic accuracy even in the absence of ROSE, could be the key to overcome the limitations of FNA. However, FNB has not yet shown diagnostic superiority over FNA. Considering all the technical aspects of FNA and FNB, the different types of needle currently available, comparisons in term of diagnostic yield, and the different techniques of sampling, a tailored approach should be used in order to determine the needle that is most appropriate for the different specific scenarios.
Core tip: Endoscopic ultrasound guided fine needle aspiration (FNA) is the gold standard for sampling solid pancreatic masses, but the small amount of tissue collected and the need of on site evaluation to maximize the diagnostic yield are some disadvantages. New fine needle biopsy (FNB) needles, with high safety profile and satisfying diagnostic accuracy even in absence of on site evaluation, could overcome FNA limitations. However, FNB has not yet shown a clear diagnostic superiority. Thus, in order to choose the better needle for a given scenario, it is important to know the technical aspects of FNA and FNB, the different sampling techniques, the types of needle available, and their diagnostic performance.