Minireviews
Copyright ©The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Stem Cells. Aug 26, 2017; 9(8): 118-126
Published online Aug 26, 2017. doi: 10.4252/wjsc.v9.i8.118
Epithelial plasticity and cancer stem cells: Major mechanisms of cancer pathogenesis and therapy resistance
Minal Garg
Minal Garg, Department of Biochemistry, University of Lucknow, Lucknow 226007, India
Author contributions: Garg M contributed to this paper.
Conflict-of-interest statement: Garg M declares no conflict-of-interest related to this publication.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Dr. Minal Garg, Assistant Professor, Department of Biochemistry, University of Lucknow, University Road, Lucknow 226007, India. garg_minal@lkouniv.ac.in
Telephone: +91-93-35820857
Received: January 24, 2017
Peer-review started: February 2, 2017
First decision: March 28, 2017
Revised: May 22, 2017
Accepted: June 19, 2017
Article in press: June 20, 2017
Published online: August 26, 2017
Processing time: 211 Days and 10.7 Hours
Core Tip

Core tip: Frequently observed reason for the failure in the treatment of malignant carcinomas is the biological programming of epithelial cells called epithelial-mesenchymal transition (EMT). It confers cancer cells, an ability to lose epithelial traits; gain mesenchymal traits; acquire stem-like properties; disseminate and colonize to distant organ sites and show elevated resistance to cancer therapies. Partial elimination of cancer stem cells and their propagation into secondary tumors post-treatment are the limitations associated with currently available standard of care including radio/chemotherapies, surgical resection or combination of these. Differentiation-based therapeutic strategies utilize the variable and regulatory powers of EMT program, lead to successful eradication of stem-like population of cancer cells by reverting the EMT phenotype and may hold great promise in improving the clinical outcomes.